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Preface

The intended audience for this book is:

e empirical! scientists who are open to the possibility that physical systems

supervene” on information processes,

e subjective® scientists seeking a rationalist* conceptual framework with
which to integrate and communicate their knowledge,

e system theorists seeking insights into a mathematical formulation of “gen-
eral system theory” and a novel mathematical approach toward system
analysis and design,

e computer scientists seeking insights into a mathematical model of mas-
sively parallel processes and a system-oriented approach to software en-
gineering,

o those seeking to understand® quantum mechanics and the world-view that
arises from it,

e those working toward the unification of the empirical and subjective sci-
ences,

e those seeking rational insight into conscious experience and the nature of
reality.

IEmpiricism claims that reliable knowledge can be obtained by observing the content of
sensory experience.

2If ‘B’ supervenes on ‘A’ then every aspect of B can be explained by recourse to A.

3Subjectivism claims that reliable knowledge can be obtained by observing ones own ex-
periential / cognitive processes. The activity of the mind rather than the content.

4Rationalism claims that there are sources of knowledge other than sense experience and
that these can be rationally verified and formulated into a science. Quantum mechanics is
an example of a rationalist science, it is based on mathematical formalisms and postulates
entities such as wavefunctions that are not observable but nevertheless real.

5Tt has often been stated that quantum mechanics is impossible to understand in any deep
sense, however by shifting to an information systems paradigm it can be clearly understood
and seen to be necessary rather than paradoxical.
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This book aims to provide a concise overview of a novel approach to system
simulation, and its theoretical implications. This subject touches on many
profound topics not traditionally associated with system theory. It also sheds
new light on many cutting edge topics.

“The reception of a new paradigm often necessitates a redefini-
tion of the corresponding science. Some old problems may be rel-
egated to another science or declared entirely “unscientific”. Oth-
ers that were previously non-existent or trivial may, with a new
paradigm, become the very archetypes of significant scientific achieve-
ment. And as the problems change, so, often, does the standard
that distinguishes a real scientific solution from a mere metaphysi-
cal speculation, word game, or mathematical play”. [1]

The book is primarily about systems and simulation in a very general sense.
The primary theme is linear algebraic simulation, which is an approach that
models and animates a target system using systems of linear equations, which
are expressed as matrices and vectors (or their logical equivalents such as graphs
or networks).

The fundamental principles of simulation and their correspondence to linear
algebraic methods are examined. An initial system modelling methodology is
described, which is then gradually refined into a more advanced form. This
refinement process naturally results in the derivation of the core mathemati-
cal foundations of quantum mechanics, thereby situating quantum mechanics
within a computational / system theoretic context. By following this process
the reader may develop a deeper understanding of both general system mod-
elling and quantum mechanics.

The process of simulation intrinsically implies the concept of a virtual reality in
which the observer is both emergent from and embedded within the information
process. It also highlights the ramifications of naive realism®.

The subject of consciousness, in particular subjective experience, is discussed
from the perspective of the systems paradigm, which leads to a compelling reso-
lution of the hard problem of consciousness” [2]. Finally an attempt is made to
derive the general form of the dynamical equations of individual consciousness.

6Naive realism is an erroneous, wide-spread and mostly sub-conscious cognitive habit of
assuming that the contents of experience are actual objects and events and not just cognitive
representations. This leads to the belief that the mind provides direct access to reality and
that we experience “the world as it is”.

"The hard problem of consciousness addresses the relationship between subjective experi-
ence and objective reality. As Nagel (1974) has put it, there is something it is like to be a
conscious organism; a subjective aspect to experience.
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The underlying concepts are relatively easy to grasp if approached with persis-
tence and genuine scepticism®. Hence the discussion will be kept as simple and
approachable as possible and will use concrete examples. If there is a choice
between approaches, the more accessible approach is used wherever possible.
Likewise with references; freely available online resources have been preferred
over more difficult to obtain resources wherever possible.

Throughout this book the concepts are developed in a logical sequence and later
statements are made within the context of the conceptual framework developed
thus far. Hence, those that skip ahead but still interpret things according to
the ‘old’ paradigm, may encounter statements that seem paradoxical. However
if they follow the logical sequence of ideas they will see that within the context
of the ‘new’ paradigm these statements represent inevitable logical conclusions.

To get the most from this book an undergraduate level understanding of core
aspects of algebra, computer science, system science, quantum mechanics and
philosophy may be necessary. As well as experience with subjective contempla-
tion of ones own cognitive processes. However, because we start with elementary
principles and develop the concepts systematically this book can be followed
with only minimal experience or comprehension in these areas.

Although aspects of this book are quite mathematical the underlying ideas
themselves are quite intuitive. Hence the book has been written so that the
reader can, if they wish, skim over the mathematics and still follow the dis-
cussion. However, for a detailed understanding it is necessary to follow the
development of the mathematics closely.
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Chapter 1

Fundamental Principles

In this chapter we first discuss the fundamental principles of simulation then use
a simple example to illustrate how these principles map to the linear algebraic
concepts of matrices and vectors. This chapter provides some initial insights
into the nature of virtual reality and general systems, as well as some motivation
and orientation prior to a deeper exploration of linear algebraic methods for
system simulation.

1.1 Simulation

The goal of simulation is to create a simulacrum of a system. To do this
we must represent the system in some manner, then devise an algorithm that
manipulates that representation so that it changes in a way that resembles the
behaviour of the system. In general, to do this we require a simulator that uses
a system model to produce a simulation of the system. Both the product of the
process and the overall process itself are referred to using the term ‘simulation’,
however it will be clear from the context whether the term is used as a noun or
a verb.

The term simulation is often used to refer to cases where we create a compu-
tational model of a physical system in order to study its dynamical behaviour,
however the process is far more general. All forms of mathematical modelling
can be conceived of as a form of simulation and so too can all forms of software
engineering.

A simulation can be used to analyse systems and make predictions about their
behaviour. This underlies the effectiveness of mathematical science, which can
model and simulate a wide variety of physical systems. In this case the simu-



2 CHAPTER 1. FUNDAMENTAL PRINCIPLES

lator is traditionally a scientifically trained human mind, the model is a set of
mathematical equations as well as theoretical propositions and the simulation
is the calculations which produce answers to questions about physical systems.

A simulation can also be used to create virtual systems. This underlies the
utility of computer software, which can model and simulate systems such as
documents, forums and telephone exchanges to the extent that they are func-
tionally equivalent to, or better than, the physical systems upon which they
were originally modelled. In this case the simulator is a computational pro-
cess, the system model is the program as well as data and the simulation is the
running application.

The general approach described in this book applies to all forms of simulation
and can therefore shed light on aspects of mathematical modelling as well as
software engineering.

However, first we introduce the basic principles of systems and the correspond-
ing basic requirements that any simulation procedure must meet in order to
accurately simulate them.

1.1.1 Target System

The system that is to be imitated is referred to as the target system. Any system
may be imitated, whether physical, symbolic, currently existing or imagined.

Systems are composed of sub-systems and integrate to form super-systems.
This results in a system hierarchy where each level is defined in terms of the
complexity of the systems'. An atomic system is a system that has no sub-
systems and a complex system is a system that has sub-systems. An example
hierarchy is; particles, atoms, molecules, cells, organisms, civilisations and so
on. Or perhaps bits, bytes, codes, programs, operating systems, the internet
and so on.

In general the system hierarchy is not rigidly defined or static because systems
develop along lines of communication, thus they dynamically integrate and
disintegrate with the changing interaction patterns. Therefore, a system may
be a sub-system within multiple super-systems. For instance, a person may be
a sub-system within a family, a corporation and a nation, whilst the family and
corporation are also sub-systems within the nation. Hence there are no rigidly
defined system boundaries and the hierarchy is complex and inter-penetrating.

The system model needs to accommodate these basic principles of systems in
some manner. For any given target system it may not be practical to model

1The complexity of a system relates to the number of sub-systems and the number of
inter-connections between sub-systems.
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the complete system hierarchy but all relevant details should be represented.

1.1.2 System State

The functional attributes of the target system can be abstracted as its state.
For instance, the volume of fluid in a reservoir is a functional attribute of a
reservoir. A complex system may have many attributes and not all attributes
may be functionally relevant. The degree to which the system model captures
the functional attributes of a target system is the degree of sufficiency of the
model.

In general there are two ways to represent a system state within a system model.
Either using symbolic variables such as numerical values or as a coordinate
within a state space, which is the space of all possible states of the system.

The state of a system is an abstraction of a system’s attributes because both the
target system and the simulated system may exhibit the same state even though
the target system’s attribute may be a volume of fluid whilst the simulated
system’s attribute may be a numerical value or a coordinate in a state space.
These attributes are quite different however the state is logically equivalent.

1.1.3 Connectivity

In any target system the various sub-systems exhibit a degree of connectivity.
This can be thought of as lines of communication. Whether or not two sub-
systems are communicating in a given moment is not relevant in terms of their
connectivity; what is important is their potential to communicate. For instance,
consider a group of people in a room where each person can potentially commu-
nicate with each other; this system exhibits point-to-point connectivity. These
connections between systems may be direct or mediated by chains of interven-
ing sub-systems and the network of connectivity may dynamically change. The
system model needs to represent the connectivity between sub-systems within
the target system.

1.1.4 Interaction

When systems communicate in a given moment and respond to the information
that is passed between them they can be said to interact. These interactions
may occur at any level of the system hierarchy, hence they are not just between
systems but also within systems when they occur between sub-systems. Hence
the behaviour of a system arises from the interactions between its sub-systems,
whilst at the same time that system is interacting with other systems and
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thereby manifesting the behaviour of super-systems. In this manner, all events
at all levels of the system hierarchy are mediated by system interactions. The
simulator needs to implement these interactions in order to produce functionally
equivalent events within the simulation.

1.1.5 State Transition

When systems interact they undergo a state transition whereby their state
changes in response to the interaction. Examples of this are particles changing
momentum due to a collision or a corporation changing its marketing strategy
due to discussions between members of its marketing department. All changes
in state are the effect of a system interaction, either between systems or between
sub-systems within a system.

The simulator can implement a state transition either as the change of a state
variable or as a transformation within a state space that maps the initial coor-
dinate to some other coordinate.

1.1.6 System Evolution

The changing system states result in a process of system evolution. This pro-
cess arises from the coordinated interactions of many systems, thus exhibiting
global coherence, i.e. at each level of the system hierarchy there arises collec-
tive entities that are not just masses of individuals but which act as a single
coordinated collective. This can be simulated either as patterns of changing
state variables or as trajectories within a state space.

1.1.7 Functional Equivalence

In the limit of complete sufficiency there is an exact functional equivalence
between the target system and the simulated system (virtual system), such
that the two are indistinguishable. For example, telephone exchanges were
initially implemented as electro-mechanical switching devices however now the
functional attributes are entirely simulated and implemented in software. The
resulting application is not only functionally equivalent to the original but due
to the flexibility of computational processes it is greatly enhanced.

Another example is the progress of mathematical science, where the models
have increased in sufficiency to the point where many aspects of the physical
universe can be calculated ab initio (from first principles) without resorting to
experimental measurements or ad hoc hypotheses. In this sense a fully sufficient
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science would have a core set of fundamental axioms and be able to answer all
questions using ab initio calculations and deductions.?

1.1.8 Virtual Systems and Virtual Reality

The simulated systems can be thought of as wvirtual systems and the context
in which they perceive® each other and themselves can be thought of as a wir-
tual reality. This does not just refer to contemporary examples of VR where
the observer exists in physical space whilst their senses are stimulated so they
experience a virtual world or experiential context. Rather it refers to the more
general scenario of an abstract mathematical or computational process that
causes abstract systems to emerge from and interact within an abstract infor-
mation space. Some examples of virtual systems are particles within a particle
simulation, conceptual entities within a mathematical model, documents within
a word processing software application or characters within a computer game.

In regards to mathematical science the virtual systems are the conceptual enti-
ties that are proposed by the theories. For example, in physics there are quarks,
gluons, strings, quantum foam, wavefunctions and so on. The virtual reality
is the image of the physical universe that is proposed by the scientific theo-
ries. The degree to which the virtual systems correspond to physical systems
depends on the sufficiency of the simulation process.

In regards to computation the virtual systems are computational entities such
as user interfaces, emails, desktops, file systems, network sockets, viruses and
so on. Computational virtual reality is also known as cyberspace.

The concept of a simulation can also be extended to include narratives such
as novels or movies. For instance, in the case of a novel the simulator is the
imagination of the reader, the system model is the text, the simulation is the
story as it unfolds in the reader’s mind, the virtual systems are the objects,
people and places within the story and the virtual reality is the world in which
the story takes place. However the methods presented here are primarily suited
to mathematical and computational simulation and can only provide an analogy
for such narrative simulations.

2The current effort within physics to find a theory of everything (TOE), if successful
would produce a sufficient science encompassing the field of physics, however given its current
approach it would not encompass the whole of science and as such would be sufficient only
within a limited, albeit fundamental domain. There would still remain major outstanding
issues such as the hard problem of consciousness [2]. For more on the hard problem see
sec. 5.3

3Here the term ‘perceive’ refers to a system’s reception of input signals and their transfor-
mation into internal signals. The more common meaning also implies an experiential aspect,
which will be discussed later in relation to consciousness (sec. 5.3).
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1.2 Linear Algebraic Simulation

Having introduced the fundamental principles of systems we now illustrate the
manner in which linear algebra can be used to model each of these principles.

To facilitate this illustration we will consider an idealised system that is stripped
of many complicating factors. We will develop a very basic linear algebraic
model of this system and then run the simulation. More advanced methods
will be introduced later that can simulate more complex systems, however this
initial approach illustrates the basic principles of linear algebraic simulation.

Consider a target system consisting of four water tanks tg, t1, t2 and t3 con-
nected by pipes. In each iteration a proportion of the water in a tank flows
through to other tanks (fig. 1.1).

0.1

v . 9
N

Figure 1.1: Four water tanks connected by a network of pipes.

There is no system hierarchy of sub / super systems that needs to be modelled
here, thus we will address this issue later (sec. 2.5.1).

1.2.1 State — State Vector

There are two approaches to representing system state, using variables or state
spaces, however here we will only consider the use of variables (state spaces will
be discussed in chapter 2).

There are four systems, each with a single functional attribute so we can use
a vector V with four elements vg, v, v9,v3 where v; represents the volume of
fluid in tank ¢;. Thus
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1.2.2 Connectivity — Causal Matrix

In our example target system there is a particular network of connections be-
tween tanks (shown in fig. 1.1), however in general each tank can potentially
be connected to each other tank. Hence the system model must be capable of
representing any possible connective network as well as specifying a particular
connective network.

If we think of the situation in terms of a weighted digraph (directed graph)
where the tanks are nodes and the connections are edges then we get the digraph
shown in fig. 1.2.

0.1

C?:) 02 -1
0.1 0.2
< 0.2 Y
) »l

€ 03 9

Figure 1.2: Weighted digraph of the connectivity between tanks.

A weighted digraph can be represented using a matrix M where each connection
between nodes is represented by an element in the matrix:

{w if an edge connects from node j to node i,
mi; =

0 otherwise.

Where m;; refers to the element in the i*® row and the j*® column of the matrix
and w is the weight of the connecting edge.

The resulting causal matrix represents the connectivity between tanks so when
used in a simulation it would model the flow of water between tanks, however
we also need to model the water that remains in each tank and does not flow.
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Hence the causal matrix also includes self-interaction terms, which lie along the
diagonal of the causal matrix. This models the flow between a tank and itself,
i.e. the water that remains in that tank.

06 01 01 O
04 07 O 0
M= 0 0 06 02 (1.2)

0 02 03 08

Each column of the causal matrix contains information about a system’s out-
puts. For instance, by looking down the first column we can see which tanks
to outputs to and what proportion of its water flows to that tank. We see
moo = 0.6 hence 60% of its water remains in that tank, miq = 0.4 hence 40%
of its water flows to t;.

Notice that each column is normalised (sums to one). If a column summed to
less than one water would be lost from the system and if it summed to more
than one a tank could output more water than it contained thereby creating
water within the system. This damping and amplification can be useful in some
simulations but it is not appropriate in this simplistic example where water is
a conserved quantity.

Each row of the causal matrix contains information about a system’s inputs. For
instance, by looking across the bottom row we can see which tanks t3 receives
inputs from and what proportion of the source tank’s water flows into t3. We
see m31 = 0.2 hence 20% of t;’s water flows into t3, m3s = 0.3 hence 30% of
ty’s water flows to t3 and mss = 0.8 hence 80% of t3’s water remains in 3.

Thus we see that there is a logical equivalence between the matrix represen-
tation, the weighted digraph representation and the connectivity of the target
system.

1.2.3 Interaction — Matrix / Vector Multiplication

System interactions are mediated by the transmission of information through
the connective network. This can be represented using matrix / vector multi-
plication (M - V). To visualise how this works imagine that the state vector is
rotated into a row vector (vo v Vg vg) and each element of the state vector
is paired with the elements of a matrix column.
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( Vo U1 V2 U3 )
! ! ! !
0.6-vg 0.1-v; 0.1-wy 0O-wg — (v (1.3)
0.4v9 0.7v1 0-vg 0-v3 — | ] ’
0-vg 0wy 0.6 02w3| — |vh
0"1)() 0.2"1}1 0.3'1)2 0.8"[)3 — Ué

We can visualise the value contained in a vector element flowing down a column,
where each matrix element in the column deflects a proportion of the value off
to the right where it accumulates in a new vector. In this way all of the initial
vector elements flow through the causal matrix to be distributed into the new
vector. Thus the causal matrix defines the causal relation between successive
system states, hence it is called a causal matriz.

In the context of the model each pair calculates the proportion of water that
flows through a particular pipe. Then each row (system input) is summed, thus
calculating the total amount of water that flows into a particular tank. Thus:

06 0.1 01 0 v
04 07 0 0 "
0 0 06 02] |uv
0 02 03 08 U3

MV, =

0.6-vg +0.1-v1 +0.1-v9 + 0-v3
0.4-vg + 0.7-v1 + 0-vg + 0-v3
0-vg + 0-v1 4+ 0.6-v9 + 0.2-v3

O'Uo + 0.2'1}1 + 0.3'1)2 + 0.8"03

1.2.4 State Transition — New State Vector

The vector resulting from the iteration becomes the state vector for the next
moment of time within the simulation.

0.6-vg + 0.1-v7 + 0.1-v3 + 0-v3 v
0.4v9 +0.7v1 + 0w +0v3 | _ |v] | _ v 15
0-vg + 0-v1 +0.6:v3 +0.2.03 | — |5 ] — "1 (1.5)
0-v9 + 0.2-v1 4+ 0.3-v9 + 0.8-v3 A

Hence the information representing the previous state of the system has flowed
through a causal framework and changed into information representing a new
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state of the system. Thus Viy1 = M-V, and as this equation is iterated the
system undergoes a sequence of state transitions.

Exercise: To get a feel for the process of matrix / vector multiplication and
what it means for a system model, consider the following two models:

0.6 02 03\ /2
<83 83})(2) and 04 05 04 (3
S 0.0 03 03/ \5

For each model, draw the corresponding directed graph or system network, then
calculate the states of the system for the next few iterations. Observe how the
information flows from the state vector, through the causal matrix and back
into a new state vector that represents the next state of the system.

1.2.5 System Evolution — Iteration

Lets explore the evolution of the system of tanks by defining an initial state
for each tank then iterating the equation. Let the state variables represent the
number of litres of water in a tank and the initial state of the system is:

40
30

10

We then iterate M-V a number of times and graph the successive state vectors,
showing the time evolution of the overall system (fig. 1.3).

40
30><\

Figure 1.3: Evolution of a system of water tanks over time.
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From this simulation run we can observe the evolution of the system over time.
However the general behaviour of the system could have been inferred from the
weighted digraph (fig. 1.2) by noting that tanks to and ¢; form a feedback loop
fo1 where t; would tend to accumulate the available water. Similarly ¢o and t3
form a feedback loop fs3 where t3 would tend to accumulate. We can also note
that fy1 and fo3 also form a feedback loop where fa3 would tend to accumulate.

We can analyse the behaviour of the systems further by noting that each suc-
cessive state vector is produced by the application of the causal matrix to the
current state vector.

Vi=M-Vy
Vo= M-V,

. (1.7)
Vi=M-Vi

Each iteration multiplies the previous result by the causal matrix M. For
example, by substitution we see that Vo = M-V; = M-M-Vy = M?.Vy, and in
general

V,=M"V, (1.8)

In this manner we can calculate the state of the system at any future moment
without having to iterate through each intervening moment.

For instance, the system state after 1000 and 2000 iterations is:

9.67741935483919
12.9032258064522

10001/ _
M v 25.8064516129045
51.6129032258090
and (1.9)
9.67741935483967
172000,/ _ 12.9032258064529

25.8064516129058
51.6129032258116

From this we see that the system tends toward a steady state equilibrium where
the feedback loop fao3 between to and t3 has accumulated most of the available
water. Although tank ¢y initially had the most water, the network of pipes
gives rise to a system evolution that results in ty eventually having the least
amount of water.
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In the above example there is still a minor change between steps 1000 and 2000.
The condition for a true steady state is Viy1 = V; thus M™ = I4x4 where Iyx4
is the 4 x 4 identity matrix I -V = V.

Note: Many calculations performed throughout this book were carried out us-
ing Sage [3], an open-source computer algebra system (CAS), and Sage code
embedded in the BTEX code of this document.

1.2.6 Non-Linear Time-Variant Systems

A linear algebraic equation such as the one above is a linear time-invariant
system. It is linear because the output is always a simple function of the input
(V, = M - V;) and it is time-invariant because the same input signal always
produces the same output signal regardless of when it is applied.

However it can still simulate non-linear and time-variant systems. Whilst the
overall M -V iterative equation is entirely linear and time-invariant, within
it is simulated a virtual system. When the simulated inputs and outputs are
considered the virtual system can be non-linear and time-variant. To illustrate
this we will examine a particular example.

The following model implements a simple echo chamber or resonant cavity. This
system model is not meant to be a realistic model of a resonant cavity, however
it is close enough to be non-linear and time-variant. Any input signal enters
the echo chamber, where any subsequent input is also added to the echo. The
echoes in the echo chamber leak out slightly so that they gradually die down.
Any signal that leaks out goes to the output channel.

The system model is:

0 0 0 ) 0
1 0998 0] -|vi] =1|wvo+ 0.998v;
0 0.002 0O V2 0.002vq

The system has three sub-systems; an input channel (Sp), an echo chamber
(S1) and an output channel (Ss).

Aside: The input channel can be discerned by the row of zeroes, which means
that system Sy does not receive any input from any of the other sub-systems,
thus any input it receives must come from some external source. Similarly,
the output channel can be discerned by the column of zeroes, which means
that system S does not transmit any information to any of the other sub-
systems, thus any output it produces must go to some external source. Thus
the system model represents an open system. Open system matrices can be
placed along the diagonal of a larger causal matrix and inter-connected by
overlapping certain rows and columns, which connects the channels. In this
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way larger systems can be constructed from numerous open systems. In general
a complete system model with a single causal matrix and state vector is a
closed system because the iterative process is self-contained. The state vector
represents the complete information space and the causal matrix represents the
complete causal framework for an entire simulation universe.

If the system model as a whole is conceptualised as a function (using Sage [3]
notation):

def simulator(V): # input V is a vector
global M # use a pre-defined matrix
return Mx*V # outputs a vector

This function is linear because V, = M -V, and it is time-invariant because
if V, = simulator(V;) then an input of V; always produces an output of V.
However if we consider the virtual system as a function:

def echo(x): # input x is a scalar value

global V, M # use a pre-defined vector and matrix

v[o] = x # sets the input channel to x

V = MxV # performs one iteration of the model
#

return V[2] returns the output channel (scalar)

This function is non-linear and time-variant. If y = echo(z) then y is not
a simple function of x because the output depends on the state of the echo
chamber, which changes, hence it is also time-variant. A given input value x;
will produce different output values at different moments.

To observe this behaviour we graph the echo() function over 6000 iterations
(fig. 1.4).

0.5
0.4

0.3

L L L "
500 1000 1500 2000 2500 3000

Figure 1.4: Random input echo chamber.
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We drive the echo chamber with a random input signal 0 < z < 1 until it
is resonating strongly (black line) then we set £ = 0 (null input signal) and
observe the echoes die down to silence (grey line). Note: the grey line follows
on from the black line however the two phases are overlayed in the graph to
conserve space.

The black line reaches a saturation point, where on average the same amount
of signal is leaking out as is being supplied. Furthermore, although the input is
random between zero and one, the output remains relatively stable at 0.5. This
illustrates a common use for an optical cavity, e.g. to stabilise a fluctuating
laser beam.

From this example we see that although the simulator is linear and time-
invariant it is not limited to only simulating linear time-invariant systems. Thus
a broad range of systems can be simulated using linear algebraic methods.

1.2.7 Virtual Systems and Virtual Reality

Having now developed an initial mathematical model that captures the fun-
damental principles of a system we can further clarify the concepts of virtual
systems and virtual reality. Whilst we describe these within the context of the
model just defined, the general principles apply to all modelling frameworks.

Within the iterative V; = M-V,_; system model we see that a virtual system is
an emergent property of the functioning of a simulator as it acts upon a system
model to produce a simulation.

There are four aspects of a virtual system, which are distributed throughout
the system model.

1. It has a state that is represented by information within the state vector.
2. It has interfaces:

e an input interface that is represented by a row of the causal matrix,

e an output interface that is represented by a column of the causal
matrix,

e a self-interaction channel where its input and output interfaces in-
tersect,

e input channels where its input interface intersects another system’s
output interface,

e output channels where its output interface intersects another sys-
tem’s input interface.
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3. It has an exzperiential process®, which is the operation of the simulator
(animating process) as it integrates the input information, computes a
new system state and thereby animates a virtual system.

4. Tt has an observable form or appearance, which arises when its state in-
formation flows through an input interface and is perceived by a system’s
experiential process.

By taking these four aspects of a virtual system into account and considering
the perspective of a virtual system, this results in four aspects of a virtual
reality.

1. A virtual system can only perceive the information that flows through
its input interface and is processed by its experiential process. This in-
formation only informs the system of the appearances of itself and other
systems. Hence the other aspects such as state, interfaces and animating
process are imperceptible.

2. Thus from a system’s perspective it appears as if it is an individual entity
that simply exists within a space filled with interacting entities, all of
which are known by their appearances.

3. The interactions between these entities are tangible® and for all intents
and purposes they seem ‘physical’ because all systems are emergent from
and embedded within the same information space.

4. The systems respond to the perceived appearances as if they were all
that exists because this is all that they can experience. Thus a virtual
reality is a construct of the appearances of systems and the virtual systems
experience that virtual reality as their physical universe.

These four aspects of virtual systems and virtual reality are not dependent
on the type of simulation methodology used but are fundamental principles
of simulation itself. From this we see that from a virtual perspective most of
reality is imperceptible and the observable part is a film of appearances that
forms within the input interfaces of the virtual systems themselves.

4To call the animating process operating ‘within’ a virtual system an ‘experiential’ process
may seem unusual to some however as we explain the systems paradigm further this will
become clearer. For now let this phrase loosely describe the fact that a virtual system
receives input, responds to it and is affected by it. Once we have examined quantum systems
and then come to discuss consciousness we are in a position to say more about the subjective
aspect of what we are refering to here as the experiential process.

5The interactions are ‘tangible’ because an input signal has a definite impact on the state
of a system.
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1.2.8 System Matrix Notation

It should now be apparent that linear algebra provides a very compact and
elegant method for system simulation. The simple examples given above il-
lustrate that the fundamental principles of systems and system simulation can
be directly mapped to the structure and interaction of matrices and vectors as
well as graphs and networks. The simplicity and mathematical foundations of
this approach lend it to further development, of both its modelling capabilities
and the range of analyses that can be performed on the system models. In the
following chapters we will explore more complex variations upon this theme
and use these methods to model more complex systems.

However not all variations are strictly linear or strictly algebraic, as we will see
in sec. 4.1. Due to these variations this overall approach to system simulation
is given the more general name System Matriz Notation (SMN) because it is a
mathematical notation and methodology that uses matrix-oriented methods to
model and simulate general systems.



Chapter 2

Probabilistic Simulation
(PSMN)

In this chapter we explore a slightly more abstract application of linear alge-
braic methods. These methods are still limited but they illustrate some deeper
aspects of the overall approach.

The method illustrated earlier used real valued variables to represent system
state, however here we encounter the use of discrete state spaces, and real
valued probability distributions over those state spaces. This approach is called
probabilistic system matrix notation (PSMN).

PSMN is a useful stepping stone toward a more complete methodology because
it is simple and intuitive yet it exhibits many of the core principles of the later
more abstract approaches. Thus we can use it to map out the overall structure
of a state space oriented SMN simulator. By identifying the limitations of
the PSMN approach and overcoming those limitations we naturally derive the
foundations of quantum mechanics.

First we must clarify some of the basic principles of the linear algebraic ap-
proach. In this chapter we illustrate these basic principles in the context of
real valued vector spaces however later they will be extended to more complex
spaces.

17
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2.1 Information

First some fundamental concepts regarding information should be introduced.
There are several definitions of information that are useful in different con-
texts, however here we take a very general approach and define information as
discernible difference. This requires an information medium which is able to
exhibit two or more different states and an information process that is able to
discern those states as being different. Therefore, information is an emergent
property of the interaction between an information process and an information
medium.

An information process not only discerns but also modifies the different states
of an information medium. The set of all possible states that can be exhibited
by an information medium is called an information space. This is the field of
discernible difference within which the information process operates.

For example, if an information space consists of the set of integers, or all real
numbers with absolute values less than one, then any mathematical function
on that space can only operate within those constraints. If an information
space consists of 64bit binary words then a computer program can only perform
64bit precision calculations unless it implements its own specific algorithms to
effectively enlarge the information space by using multiple words.

2.2 Rings

An information space is related to what mathematicians call a ring. To situate
rings within the context of linear algebraic simulation consider that vectors and
matrices can be thought of as structured containers for variables. A variable
is a symbolic entity within a computation that has both an identity (e.g. the
variable x or the vector element v,,) and a set of possible values (e.g. z € R
which means that = exhibits values from the set of all real numbers).

A ring defines the possible values that a variable may exhibit and therefore
defines the information space, which places fundamental constraints on the
operation of all information processes within that space.

For now the only rings that we will consider are B binary (0, 1) and R the
set of all real numbers. We will explore some of the properties of information
processes within this context and then later we will encounter complex rings.
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2.3 Vector Spaces

A vector can be thought of as an ordered list of variables which can exhibit
values defined by a ring. For example, consider the vector v = (vo vl) with
v; € R. The set of all possible states of a vector is a wvector space. Thus a
particular instance of the vector v is a coordinate that identifies a point within
a 2D Euclidean vector space and the set of all possible instances of v spans an
entire 2D Euclidean vector space.

The number of elements in a vector (its degree) determines the number of di-
mensions of the corresponding vector space. Each component of the vector
represents a magnitude along an orthogonal (perpendicular) axis of a vector
space. For instance, v can be expressed as a linear combination of two orthog-
onal vectors v = ¢y (1 0) +c1 (0 1) where coefficients ¢; € R.

A set of orthogonal vectors that span a vector space is called a basis set and
the individual vectors are called basis vectors. Any vector within the vector
space can be parametrised as a linear combination of basis vectors. Thus V =
Z?:l ¢ v =¢1-v1+ ...+ ¢y, v, where the ¢; are real valued coefficients, the
v; are basis vectors and n is the dimension of the vector space as well as the
degree of the vectors.

Any basis set can be used, for instance the axes of the Euclidean space can be
rotated, thus the values of the coefficients will change but the point itself will
remain unchanged.

A more abstract (curvilinear) parametrisation of the two dimensional space is
(r,0), which uses distance from the origin and angle from the positive x axis to
specify the coordinate of the point (fig. 2.1).

Figure 2.1: Two Coordinate Schemes for a 2D Euclidean Plane.

It doesn’t matter which coordinate scheme is used, so long as there is enough
information to uniquely specify the point. However in particular cases it is
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often much simpler to use one coordinate scheme over another. In this book we
use a Euclidean parametrisation.

2.4 State Vectors

When a vector is used to represent the state of a system it is called a state
vector. The particular type of state vector that we will examine in this chapter
contains a single element for each possible state that a system may occupy.
These vector elements are real valued variables in the range 0 < v; < 1, which
represent the probability that the system is currently in that state. The state
vector represents a probability distribution over all possible states. It must be
normalised, i.e. the sum over all probabilities must be equal to one because it
is certain that the system exhibits some state, but it is not necessarily certain
which state.

To illustrate this with a concrete example, consider a binary system that can
occupy only two possible states that we will call sg and s; (the methods illus-
trated here can be directly applied to systems with more states). The state

vector will then have a degree of 2 (two elements) v = (ﬁ E?;) where p(0) is the

probability that the system is in state so and p(1) is the probability that the
system is in state s;. This is refered to as a qubit. If v = <é) then p(0) =1 so

the system is definitely in state sg and if v = (?) then p(1) =1 so the system
is definitely in state s;.

If we restrict the probabilities to only integer values (0 or 1) then we retain a
strictly classical representation where a system must be entirely in one state OR
the other. In this case we refer to the state vector as pseudo-classical because
it is a probability distribution that represents a classical state. By using real
valued probabilities we move one step closer to quantum mechanics because a
system can be in a mixed state but there are still major differences between
this probabilistic approach and quantum mechanics. However, what we learn
here provides a stepping stone towards the quantum case.

2.5 Direct Products

So far we have defined the state of a single isolated system, but in order to model
system interactions we need to consider their joint probabilities. Consider two

: pa(0)> (pb(O)) :
binary systems A = and B = . The direct product of these
vy <pa<1> po(1) P
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two vectors gives us a vector that contains all permutations of elements from
each vector.

(0) o (v (b

~ (pa(0 po(0)\ | pa(0)ps(1) | _ [ Pasr(01

A®B = ( a(1>> ® <pb(1)> = paWps(0) | = | pas(10) (2.1)
Pa(1)ps(1) Papn(11)

In general if the two vectors have degree N, and N, then the resulting vector
will have degree N, - Np.

2.5.1 Joint Probability / Complex Systems

The resulting state vector represents states of the combined system AB. Thus
the model is no longer of two isolated systems A and B but of the single system
AB that exhibits four states sgg, So1, S10 and s11. This addresses the issue of
representing the system hierarchy that was mentioned in regards to the target
system (sec. 1.1.1).

This approach also highlights the connection between interaction and complex
systems. If the two systems A and B interact then we need to model their
joint probability, likewise if they interact they participate as sub-systems of
the complex system AB. Thus the fact of interaction and the fact of being
sub-systems are different ways of thinking about the same situation. If a group
of systems are strongly interacting it is perceived as a single complex system
whereas weakly interacting systems are perceived as separate systems.

The process whereby a group of sub-systems is perceived to become a sin-
gle super-system is called a meta system transition. However, as we see here,
nothing fundamentally new is created when a super-system seemingly comes
into existence; rather the super-system is an emergent property of coordinated
sub-system interactions.

Thus a meta system transition is a perceptual process and different systems
will perceive different system hierarchies. When systems interact strongly we
perceive them as sub-systems within a single super-system (object of percep-
tion) and when they interact weakly we perceive them as the space between the
objects of perception.

For example, consider the molecules within a rock, if we apply a force to a
small number of them by pushing the rock with a finger the impulse force
is rapidly communicated amongst the molecules in the form of a shockwave.
Due to the strong interactions all of the molecules begin to move in response
to the force and we perceive the rock itself to move as an individual entity.
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If the molecules were weakly interacting, such as in a gas, the impulse force
would be sparsely communicated and the movement would be less organised,
i.e. turbulence within the gas. An intermediate example is a blob of fluid-like
jelly, where some impulse forces would result in a clearly moving shockwave
and collective motion whereas others would result in the breakup of the blob
into what appears to be many blobs.

If a system with different interaction properties (e.g. perceptual faculties) were
to observe these same events it would perceive the system boundaries differently.
It may perceive the rock as a gas or perhaps the gas as a solid object, depending
on the way in which it interacted with the objects. For instance, a neutrino
can pass through an entire planet with very little chance of interacting, thus
neutrinos would perceive the Earth as “empty space” or a very rarified gas.

This illustrates that the objects that a system perceives are not fundamen-
tal entities in themselves. Rather they are objects of perception that are de-
rived from the complex interactions of sub-systems, which produce collective
behaviour that may be perceived as a single super-system if the observer has
the appropriate perceptual faculties.

Hence system hierarchies are not ‘hard-wired’ and different systems perceive
different system hierarchies and even the same system, in different perceptual
modes can perceive different system hierarchies.

This also applies to a system’s perception and conception of itself! For instance,
one may conceive of oneself as a single indivisible entity (a person), or as an or-
ganised collective of trillions of cells (organism), or as a member of a civilisation
(citizen).

These conceptualisations correspond to system (individual), super-system (col-
lective) and sub-system (part). Each part or collective can perceive itself as an
individual entity and each individual can perceive itself as both a part and a
collective.

All of these conceptualisations are equally accurate because system dynamics
occur at all levels of the system hierarchy thus no system or level has a privi-
leged position. However each system perceives a universe centered around itself
and its level of the system hierarchy, thus it comes to conceive of things from
that perspective. A systems based approach can integrate the many individual
perspectives in any given context, to provide a holistic overview.

2.6 Matrix Operators

Recall that a vector represents a point within a vector space. Thus, when a
causal matrix operates on a vector and transforms it into another vector this is
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logically equivalent to a transformation within the vector space. A particular
causal matrix represents a transformation operator, which can be applied to
any vector within the vector space and will transform it into another vector
within that space.

Now that we have a state vector for the complex system AB we can consider
the form of the causal matrix that will operate on it. First we will consider
the case where the causal matrix elements m;; are drawn from a binary ring,
with values 0 and 1 only, then we will extend this to the case of probabilities
m;; € R where 0 < m; < 1.

In the binary case we find that the causal matrix defines a deterministic causal
framework. For example, lets study the causal matrix that implements a
causal framework for a circuit of two logic gates A’ = A NAND B and
B’ = AXOR B (fig. 2.2).

Figure 2.2: A circuit consisting of two logic gates NAND and XOR.

These are two simple binary logic operations between A and B. NAND is NOT
AND, which is true when neither A nor B are true. XOR is the exclusive OR,
which is true when A or B is true but not both.

The truth table for these two logic operations is:

A|B|4|B
0010
0[1]1]1 (2.2)
1{o|1]1
11070

In this truth table the two left columns indicate initial values for A and B
and the two right columns indicate the resulting values A’ and B’ after the
application of the logical operations. By reading across the rows, in terms of
joint states of AB we see that:
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AB AB’

00 — 10

01 — 11 (2.3)
10 — 11

11 — 00

From these state transitions we can determine the structure of the required
causal matrix. There are two ways of approaching this. For each initial state we
look down the corresponding column and place a 1 in the row that corresponds
to the resulting state. For instance, in the causal matrix below, consider the
transition of state 00 — 10. These are the first and third states so we look
down the first column and place a 1 in the third row. Then we perform a
similar operation for the other state transitions.

o = o o
= O O O
= O O O
O OO

Another approach is to consider each input state and the corresponding output
state, for example

So00 = — S$10 = (25)

OO O
o = o o

Then think of the causal matrix as a simple transformation table, so the ouput
state s1¢ is placed in the first matrix column, which corresponds to the input
state sgg. When this is done for each pseudo-classical input we end up with
the above causal matrix. Each vector element is like a signal and each matrix
column is like a network that distributes the signal along different channels,
resulting in a new state vector. A pseudo-classical state fires a full power signal
down a particular column of the causal matrix, which distributes this signal into
the appropriate output state. This approach is especially useful for visualising
matrix / matrix multiplication M; - M;, which we will encounter later.

When the resulting causal matrix is applied to a state vector it transforms
the probabilities in a manner that simulates the behaviour of the two logical
operations.
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00 0 1 p(00) p(11)
000 0 (01) 0

M-Vi=11 9 0 0 5(10) - p(00) (2:6)
0110 p(11) p(01) 4 p(10)

A simple way to test this is to input a pseudo-classical state vector and see
what happens to it. For instance, lets consider the case where the initial state
is s10 so p(10) = 1 and the rest are zero.

(2.7)

o= o o
—_ o o O
_ o0 o O
S O O
o= O O
— o O o

This implies that 10 — 11 as expected from (2.3). From the bottom row of
(2.6) we see that the new p(11)" = p(01) 4 p(10) thus all of the probability from
p(10) = 1 has flowed through the causal framework and resulted in p(11)’ = 1.

We needn’t only consider pseudo-classical inputs, the causal matrix operates
equally well on general probability distributions. For example, we can find out
what happens if the system is in a mixed state, 40% sqo and 60% s1¢.

00 0 1 0.4 0
00 0 0 0 0

M-Vi=11 4 ¢ 0 06| |04 (2:8)
0110 0 0.6

Thus the resulting state is 40% s19 and 60% s1;.

A binary causal matrix such as this is deterministic because each pseudo-
classical state is mapped to another pseudo-classical state. However if the
matrix elements were probabilities it can be the case that a system that is in a
pseudo-classical state may transform into a mixed state. This would result in a
probabilistic causal framework where, for instance, being in state s, may mean
that in the next moment the system has a 20% chance of being in state s, and
an 80% chance of being in state s,..

2.6.1 Non-Algorithmic Processes

One of the benefits of the state space approach can now be explained. Above
we saw this approach applied to the simple case where A’ = A NAND B and
B’ = A XOR B, which is a simple algorithmic process. However if we change



26 CHAPTER 2. PROBABILISTIC SIMULATION (PSMN)

the causal matrix slightly we can easily produce a simulation of a process that
has no algorithmic representation. Therefore, using the state space approach
we can simulate all processes, even non-algorithmic processes for which there is
no non-state-space representation.

2.7 Dynamical Groups

We saw above that a set of vectors form a vector space and a matrix implements
a transformation operation within that space. So let us here consider the set of
all matrices in conjunction with the set of all vectors.

Let Mg be the set of all column normalised, IV x N matrices over the ring R.
Let Vyr be the set of all normalised, degree N vectors over the ring R. For
simplicity we will consider the case where N = 2 and R = B the binary ring,
which represents a deterministic simulation of two classical binary systems. The
method illustrated below can be directly applied to more complex simulations.

S (I B N A ) B

1 .
) regardless of the initial state.

The first matrix always sets the vector to <O

The second matrix always sets the vector to regardless of the initial state.

0
1
The third matrix is the identity matrix which leaves the initial state unchanged.

The final matrix flips the state so that (é) — <(1)> and vice versa.

These matrices can be formed into two subsets "My and M. “Mop contains
the first two operators, which disregard the initial state and ‘Mg contains
the last two, which transform the initial state. In the first subset there is one
such matrix for each possible state, hence there are N of these matrices. The
second subset represents N transformations within the vector space, hence we
will consider this subset.

O ) B

For the vectors there are only two possible states.

=) ©)
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These sets are particularly simple in this case but the same general principles
apply to all finite sets of causal matrices and state vectors.

Now we consider both *Myp (the set of N transformations) and Vg (the set of
N states) under the operation of matrix / vector multiplication. This produces
a dynamical group.

6960
G900
£ (-0

(3 0)(1) = 6)

This is a listing of every possible M -V combination. We see here that for every
possible pair of state vectors V; and V, within this group there exists exactly
one matrix operator that transforms V; — V}, and exactly one matrix operator
that performs the inverse transformation from Vj, — Vj;. This means that every
state is accessible from every state and for every transformation there is an
inverse.

There are N states and N transformations so for any given state V; there is
the identity matrix that maps V; to itself and then there are N — 1 matrices
that map V; to each of the other possible states.

This is related to V; = M4V, (1.8), which implies that for any multi-step
process from one state to another there exists a logically equivalent single step
process. This is remeniscent of a hyperspace jump in science fiction. Rather
than travel from one state to another by executing all of the intervening steps,
it is possible to jump directly to the final state in a single step.

If we select a particular state vector V; and a particular matrix M, (which is
not the identity matrix) then by repeated application of that matrix we find
that V; — Vi, — ... = V; — V; which represents a complete cycle. Hence the
repeated application of any causal matrix produces a cyclic system evolution.
The identity matrix produces a trivial cycle of one iteration. The repeated
application of the matrix M, for an n step cycle is logically equivalent to the
application of a single identity matrix, thus M = I. This cyclic behaviour
is trivial in the simple (N = 2, R = B) example because there are only two
possible states, however by exploring more complex (N, R = B) scenarios this
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cyclic behaviour becomes more apparent.

From this analysis we see that the state space approach can simulate the state
of a discrete system and its state transitions. From this field of possibility
we can select particular matrices and particular initial states that produce a
simulation. However the PSMN approach cannot simulate every conceivable
discrete system as we will see in sec. 2.8. However once the limitations of
PSMN are overcome the resulting state space approach can provide a complete
modelling methodology with which to simulate discrete systems.

This discrete approach can also be extended to continuous systems however
that is beyond the scope of this book.

2.8 Limitations of PSMN

As a mathematical model PSMN is an improvement on the approach that we
used to model the water tanks. However it is generally applied to systems
with discrete states, because a single real valued state variable has an infinite
number of possible values hence its state vector would have an infinite degree.
These infinities are not problematic for mathematical models but pose a serious
problem for direct computer simulation.

Furthermore, it is not practical to implement PSMN as a classical computer
simulation even for discrete complex systems due to the exponential increase in
the complexity of the state vector. However quantum computers would be ideal
for such simulations, because the exponential complexity arises when crossing
from variable oriented methods to state space oriented methods and quantum
processes are inherently state space oriented.

Aside from these practical limitations there are fundamental mathematical
shortcomings with the PSMN approach.

2.8.1 +/NOT Logic Gate

The probabilistic nature of the PSMN state vector might seem to suit it to
simulating quantum systems, however it is relatively easy to find quantum sys-
tems that the PSMN approach cannot simulate. The limitation with PSMN
stems from the fact that it represents probabilities directly using real num-
bers, which means that the state vector cannot encode enough information to
represent certain systems. A particular example will be used to highlight this
shortcoming.

In a classical context a very simple logic gate is the NOT gate which maps 0 — 1
and 1 — 0, however in a quantum context we can define a variation on this, the
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VvNOT gate. Given a pseudo-classical state, the vV NOT gate produces a mixed
state, however another application of the vVNOT gate to this mixed state will
result in the NOT of the original input. Thus vVNOT - vNOT = NOT. Thus,
in terms of probabilities:

(o)== (53) === () -
()= (3) = () .

But how is it that in (2.13) the mixed state transforms to one state whilst in
(2.14) it transforms to another? This problem can be recast into a different
form. Consider a transformation that maps a state s from 1 — 0 — —1 as well
as —1 — 0 — 1. If this operation is performed in one dimension, once s = 0
there is not enough information to specify whether the next state should be
s =1 or s = —1. However, if we consider a point in two dimensions the extra
dimension encodes the required information.

If the s value is the projection of the point onto the z axis then the extra
information encoded by the y axis allows us to implement the transformation
as a simple rotation about the origin (fig. 2.3).

y M

-1 \i \\‘1 X -1 0\ \\‘1 X

;\"__‘//'
-1—-0—-1

A A

Figure 2.3: Transformation in two dimensions.

We could try explicitly using a hidden variable in the state vector but it turns
out to be more effective to incorporate the extra information within the variables
themselves. This involves shifting to the complex ring C and using variables of
the form z = x + iy where i = /—1. Then we can simulate systems such as the

VNOT gate.

By shifting to the complex ring we develop a quantum approach. The v/ NOT
gate example will be examined further in sec. 3.3, once the fundamentals of the
complex ring have been introduced.
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2.8.2 Group Algebra

There is a subtler problem with PSMN, which is also related to the need for
complex values. To examine this let us introduce the concept of matrix spaces,
which are similar to vector spaces only involving matrices rather than vectors.
The set of all possible N x N matrices over a ring defines a matrix space. There
exists a basis set of basis matrices such that all matrices within that space can
be expressed as a linear combination of the basis matrices.

In the case of 2 X 2 matrices where m;; € R there are four basis matrices

10 0 1
w=(o1) e (o)
0 -1 10
b2:(1 0) b3:<o —1)

which form a basis set, from which any matrix M can be represented as a linear
combination of the b,, matrices. From this we can calculate the matrix specified
by a set of coefficients.

3
M:ZCn'bn:CO'bQ+C1'b1+CQ'b2+C3'b3 (216)

n=0

where the ¢, are real coefficients. Furthermore,

M= (moo mm) _ (Co +c3 1 — 02) (2.17)

mip M1l c1+cC2 Co—C3

from which we can calculate any particular matrix element from the coefficients.
Also

co = 3(moo +mi1) c1 = 3(mo1 +mao)

(2.18)
co = —1(mo1 — mao) cs = 3(moo — may)

from which we can calculate the coefficients that correspond to any given ma-
trix.

Now consider the matrix group that forms under the operation of multiplication
by the transpose. The transpose of a matrix changes each row to a column and
each column to a row.
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a b a ¢
Thus (c d>_)<b d>'

Below are listed all possible pairs of basis matrices under multiplication by the
transpose.

bObg = bo bob{ = bl bobg = —b2 bObg: — b3
bibg =b1 bib{ = bo bibT = —bs  bybT = by
(2.19)
beg = by bob] = —bs babd = by bobl = b,
bsby =bs  b3b{ = —ba  b3bl =b b3bT = by

From the diagonal terms we see that b? = by for all i thus the norm N =
b2 + b2 + b3 + b3 = 4by, which is positive definite [/]. This means that the
matrix space has a well defined measure of distance or length (v/A') and any
vector with zero length also has a zero norm. A classic example of a positive
definite norm is Pythagoras’ theorem where the length of a vector I = /22 + y2.

However there is a problem with this group, which can be discerned by isolating
the terms bobl = —by and bybl = by. For a well formed algebra it is necessary
that the identity matrix commutes with all other matrices. For example, in the
group formed from real numbers under the operation of multiplication we find
that 1-z = z-1. However in this group of 2 x 2 matrices under the operation of
multiplication by transpose we find that the commutation requirement is met
by all matrices except for by. The two terms that we isolated are in fact anti-
commutative because bgbZ = —(bybl). This arises because b2 = —by.  In order
to achieve a positive definite algebra where the identity matrix is commutative
we will have to change the matrix by — by where i = v/—1 and also change
the operation to multiplication by the adjoint (conjugate transpose). We will
do this later in sec. 3.1.2 in the lead up to a quantum mechanical modelling
methodology.

2.8.3 Complementarity

Another limitation of the PSMN approach is that it cannot represent the phe-
nomenon of complementarityl.

In PSMN all states that a system may exhibit are explicitly encoded within the

LComplementarity is the situation where a system can exhibit mutually exclusive observ-
able forms depending on how it is observed. For instance, many physical systems can be
observed as either a particle or a wave but never both at the same time. Each perspective
arises from a different way of observing the system.
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state vector thus any system state can simply be read off from the state vector.
However numerous experiments, most notably the Stern-Gerlach experiment [5]
prove that reality is more subtle than this. If two states are complementary
then the more accurately we measure one of them the less we can know about
the other. This leads to the Heisenberg uncertainty principle.

In the case of the Stern-Gerlach experiment a beam of silver atoms is passed
through a magnetic field where the atoms are deflected depending on their
magnetic dipole moment, thus the beam splits into two well defined beams.
The orientation of the magnetic field can be changed to measure the dipole
moment in different directions. If the beam is fired along the y axis then the
field can measure dipole moments along either the x or z axes. If we first split
the beam along the z axis and block the beam with —z polarisation so that only
+2z polarised atoms pass through, we can then measure this beam along the =
axis producing two beams with +x polarisation. If we then measure either
of these beams along the z axis we will find that it consists of both 4z and
—z polarised atoms even though the —z polarised atoms had been previously
filtered out. Thus the polarisation of the magnetic dipole moment of an atom
is not objectively encoded in the state of the atom. The act of measuring along
the z axis put the z polarisation state into a mixed state of both +z and —z
polarisation states. We will examine this experiment in more detail later in the
context of quantum measurement (sec. 3.2.3)

E.C. Kemble described these quantum measurement phenomena by saying:

“We have no satisfactory reason for ascribing objective existence
to physical quantities as distinguished from the numbers obtained
when we make the measurements which we correlate with them.
There is no real reason for supposing that a particle has at every
moment a definite, but unknown, position which may be revealed by
a measurement of the right kind, or a definite momentum which can
be revealed by a different measurement. On the contrary, we get into
a maze of contradiction as soon as we inject into quantum mechanics
such concepts as carried over from the language and philosophy
of our ancestors...It would be more exact if we spoke of ‘making
measurements’ of this, that, or the other type instead of saying that
we measure this, that, or the other ‘physical quantity’.” [0]

An observation produces an observable, not the system state which is imper-
ceptible, so to use observables to represent system states within a system model
produces a model that is only of our perception of the appearances. To do so
has been common practice throughout the history of simulation but this prac-
tice is subtly flawed. This issue is intimately related to naive realism, which is
an often unconsciously adopted epistemology (theory of knowledge) that asserts
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that systems fundamentally exist in the manner that they appear to exist [7].
For instance, a red object is believed to actually be red rather than just be a
complex system which when observed produces a cognitive response that is ex-
perienced as redness. Similarly a particle is believed to actually have a location
rather than just have some state which when observed produces an observed
location. From the four aspects of virtual reality (discussed in sec. 1.2.7) it is
clear that ultimately, it is naive realism that causes virtual systems to perceive
themselves as individual entities within a ‘physical’ universe.

Naive realism is a fundamentally flawed epistemology, as we will later see in
the chapter on quantum mechanics. Naive realism is subtly problematic when
attempting to simulate systems. This issue was touched upon earlier in regards
to virtual systems within a linear algebraic context (sec. 1.2.7, pg 14). Of
particular relevance here, the first and last aspects of a virtual system that
were mentioned are:

1. It has a state that is represented by information within the state vector.

4. It has an observable form or appearance, which arises when its state in-
formation flows through an input interface and is perceived by a system’s
experiential process.

Thus the system state and the observable appearance are distinct. This applies
not only to virtual systems within a simulation but also to physical systems,
thus leading to the distinction between wavefunction and observable in quantum
mechanics. Hence, to be accurate, the observable form of a system cannot be
used to model the state of a system.

By addressing this issue, as well as the other limitations of PSMN, we enter the
quantum realm where it becomes clear that objective reality is imperceptible
and the observables that we perceive depend on how we look.
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Chapter 3

Quantum Simulation

(QSMN)

In this chapter we extend PSMN to overcome its limitations and thereby derive
the mathematical foundations of quantum mechanics. We will encounter wave-
functions, Pauli matrices, unitary evolution operators, Hermitian observable
operators, the Schrodinger equation of motion and complementary measure-
ments on a quantum system. We also examine the vVNOT gate example and
simulate a simple quantum computer. By this stage the rest is standard quan-
tum mechanics which is discussed at length elsewhere.

Here we shall derive quantum mechanics in finite dimensional vector spaces.
This is extended to the infinite dimensional Hilbert space elsewhere [3, 9].

3.1 Algebra on a Complex Ring

We are switching to the complex ring C thus we are considering variables of the
form z = x + iy where x,y € R and i = /—1. It can be useful to think of these
variables as a coordinate in a two dimensional vector space. Thus the basis
vectors are 1 and ¢, whilst the coefficients are x and y. This two dimensional
space is called the Argand plane.

35
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3.1.1 State Vector — Wavefuntion

The state vector no longer represents the probabilities directly, instead the

probability for the i*? state is v; - v} where v} is the conjugate’ of v;. Thus

22t = (st iy) - (o — iy)
=22 4+ y? +izy —izy (3.1)
— 2 42
This complex form of the state vector is identical to the quantum state vector,

which represents the wavefunction or quantum state of a system. Rather than
label it as a vector V' we now use 1 or |¢) to indicate that it is a wavefunction.

3.1.2 Complex Matrices

As mentioned earlier in regards to group algebra (pg 31), to overcome the
limitations of PSMN and achieve a coherent matrix group algebra we need to
adopt a complex ring C and use the operation of multiplication by the adjoint
(conjugate transpose). This involves changing the by basis matrix in (2.15). Let
us explore what this entails.

For the case of 2 x 2 matrices where m;; € C there are four basis matrices

(10 (01
9 =10 1 1=11 o
(0 —i (1 0
2={; o) 7 lo -1

that form a basis set, from which any complex matrix M can be represented as
a linear combination of the ¢, matrices. In quantum mechanics 01,09 and o3
are called the Pauli matrices and oy is the identity matrix.

M:ZZn'Jn:ZO'O'0+21'0'1+ZQ'0'2+23'0'3 (33)
n

where the z, are complex coefficients. From this we can calculate the matrix
specified by a set of coefficients. Furthermore,

M= (moo mm) _ (Zo +2z3 21 iZz) (3.4)

mig M1y 21 +122  zp— 23

1The conjugate of 4 is —i, thus if z = & + 4y then 2* = x — iy.
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from which we can calculate any particular matrix element from the coefficients.
Also

zp = %(moo +ma1) z1 = %(mm +mao)

Ju

(moo - m11)

N

29 = i5(mo1 — m1o) 23 =

from which we can calculate the coefficients that correspond to any given ma-
trix.

Now consider the matrix group that forms under the operation of multiplica-
tion by the adjoint. Below are listed all possible pairs of basis matrices under
multiplication by the adjoint.

0'00'8 = 0o 0’00’1L =01 000'3 = 09 000'; = 03

P P T [

105 = 01 0101 = 0p 0109 = 103 01053 = —102

(3.6)

P f P t

200 = 02 0201 = —103 0209 = 00 02053 =101

oaol — [ t_ -

300 = 03 0301 = 102 0309 = —101 0303 = 0g

Where 1 represents the adjoint or conjugate transpose. From the diagonal
terms we see that o7 = og thus the norm N = 03 + 0% + 03 + 03 = 409, which
is positive definite. From the top row and left column we see that the identity
matrix commutes with all matrices. In particular the terms that were previously
problematic JOUE = 09 and 0'20'8 = 09 now commute because Ug = 0.

Thus we not only have a matrix group with a well formed algebra but we have
also derived the Pauli matrices which are used to represent the spin angular
momentum or magnetic dipole moment of particles such as electrons, protons,
atoms and so on. Spin angular momentum is analogous to the angular mo-
mentum of a top that is spinning in place. It is these matrices that explain
the behaviour observed by the Stern-Gerlach experiment [10], which we will
examine in detail in sec. 3.2.3.
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3.2 Matrix Mechanics

3.2.1 Unitary Matrices

Matrices can represent many different operations, not just stepping a simulation
forwards or back in time?. For instance they are also used to represent rotations.
In both of these cases we need to have M - MT = I, the identity matrix. For
instance, a rotation followed by a reverse rotation should cancel out, just as a
step forward in time followed by a step back should cancel out. Therefore the
requirement that M - MT = I is a fundamental requirement of coherent matrix
operations. This requirement implies that MT = M~! the inverse of M. A
matrix that has this property is called a unitary matrix. A feature of unitary
matrices is that both rows and columns are normalised. Hence they preserve
the normalisation of the state vector when stepping a simulation both forwards
and backwards. Likewise for both rotations and inverse rotations.

When a unitary matrix operates on a state vector in order to simulate a quan-
tum system, such a matrix is called a wunitary evolution operator U(t) = U®.
Thus (t) = U(t) - 4(0) = U? - (0). This is logically equivalent to our earlier
iterative equation V; = Mt - Vj,.

When a unitary matrix is used to perform a rotation of bases, this is called
a unitary rotation matriz. It is often seen in the form MTOM where O is a
Hermitian operator® that extracts some observable measurement from a state
vector and the unitary matrix M translates the state vector into a desired
basis set in order for the measurement to be made. This explanation has been
expressed in the Schrodinger picture where it is the state vectors that evolve and
the measurement operators are static. However it can also be interpreted in the
Heisenberg picture where it is the measurement operators that evovle and the
state vectors are static. We can switch between pictures depending on whether
we use the unitary matrices for either evolution or rotation. For instance, an
evolving measurement operator evolves according to O(t) = UT(t)O(0)U(t).

3.2.2 Equation of Motion

It is possible to express a unitary operator as a function of a Hermitian operator.
One notable form is U = e’ where H is Hermitian. This exponential form is
particularly important in quantum mechanics because it leads us to an equation

2To obtain a time reversed simulation we use the adjoint of the causal matrix, thus ev-
ery row becomes a column and vice versa. Hence every input interface becomes an output
interface and vice versa. This means that information flows from input to output and the
information process runs in reverse, thus the simulation runs in reverse.

3 A Hermitian operator is self- adjoint, i.e. OT = O.
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of motion for quantum systems, which describes the evolution of the state
vector with respect to time. The outline of the following calculation was drawn
from [8].

If we express the unitary evolution operator in the form
U(t) = e /" (3.7)

where H is the Hamiltonian (which describes the energetic dynamics of the

system) and h = % ~ 1.0546 x 10727g-cm? /s where h is Plancks constant®.

Then consider a wavefunction of the form

¥(t) = U(t) - 4(0) (3.8)

then consider the dependence of 1(t) on time, i.e. the rate of change of ¥(¢).
By differentiation we get

— =5, ¥(0) (3.9)

Using (3.7) and the fact that %ey = ey% we get

a%it) _ U(t)% (Z;H ) - ’;;_LH U(t) (3.10)

Substituting this into (3.9) gives

ou(t) —iH

o T h U(t)y(0) (3.11)

Using (3.8) and multiplying both sides by ih gives

ou(t)
th = Hy(t) (3.12)

This is the Schrodinger equation of motion, which is as fundamental to quantum
mechanics as Newton’s equations of motion are to classical physics.

3.2.3 Quantum Measurement

In the PSMN approach the measurement of the state of a system was trivial
because the states were directly represented in the state vector. However in the
quantum case things are a little more complex.

4Planck’s constant describes the quantisation of the physical universe, which is analogous
to the pixelation of a digital image.
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If a measurement operator O is applied to a state vector ¢ and results in a
real valued multiple of the state vector O - ¥ = k - 1 where k € R then the
values k are eigenstates and the state vector is an eigenvector of the operator.
This corresponds to a measurement of a state that happens to be directly
represented by the state vector. A measurement of this kind leaves the state
vector unchanged.

However there are other bases or sets of states that can be measured from the
same state vector. Measurement of these states changes the state vector.

To illustrate quantum measurement of different bases we will examine the
Stern-Gerlach experiment mentioned earlier (sec. 2.8.3), this example is drawn
from [10]. The Pauli matrices o1, 09,03 from equation (3.2) function as mea-
surement operators on the spin state of a particle so from here on we will
consider them to represent measurable quantities. The two states in the wave-
function represent spin up and spin down states and the three Pauli matri-
ces measure the spin in the three different axes, z,y and z corresponding to
01,09,03. The spin angular momentum is measured by %hoi where ¢ = 1,2,3
and the magnetic dipole moment is measured by po; where, for example, p =
—9.27 x 1072 g-cm? /s?-gauss for an electron and u ~ 1.4 x 10~23g-cm? /s?-gauss
for a proton. We will be considering the magnetic moments.

Notice that the spins in the three directions are not represented independently,
but instead by a single two state wavefunction, however each of the three spin
states in the three axes can be measured from that wavefunction. Because there
is only enough information to fully specify one of these spin states, although
each can be measured, they can only be measured one at a time.

For simplicity we leave out the p value and just use the Pauli matrices. If there
is a magnetic field that varies in space it induces a force that accelerates the
particle in the direction of the changing magnetic field. The force is proportional
to the projection of the magnetic moment in the direction of the field. This
provides a way to measure the projections of the magnetic moment in different
directions.

It is this force that causes the beam to split in the Stern-Gerlach experiment.
The fact that the beam splits in two indicates that there are only two possible
values of magnetic moment in each direction. In each direction o = 1. Because
the square of the quantity has value 1 the quantity itself can have only the values
+1 and —1 therefore the magnetic moments have only the values +p and —p
in each direction. There are no intermediate values so the beam splits cleanly
in two.

To determine the mean value of a quantity we multiply each state by its prob-
ability and sum them, ie. {(o;) = (=1) - p(-1) + (1) - p(1). If p(-1) =1
and p(1) = 0 then (o;) = —1. If p(—1) = 0 and p(1) = 1 then (o;) = 1. If
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p(—=1) = p(1) = 0.5 then (o;) = 0 (mixed state).

These mean values are not independent but are constrained by the inequality
(01)% + (02)% + (03) < 1 (see [10] for the proof). Thus if (o;) = 1 or —1 then
the other two mean values must be 0, hence in a mixed state. Thus if one is
defined the other two are undefined.

Thus, in the Stern-Gerlach experiment, the atoms were first filtered to only
allow through spin up particles along the z axis, i.e. (o3) = 1. However as
soon as the beam was split along the z axis this z-axis information was erased
because once we measure (o1) = 1 or —1 then (o3) = 0 thus there is an equal
likelihood of later measuring either spin up or spin down along the z axis.

From this example we see that the state of a quantum system is not directly
encoded in the state vector, instead an abstract state is encoded, which must
then be measured by a measurement operator. If the observables are comple-
mentary then it is impossible to accurately measure both at the same time,
there simply isn’t enough information to define both at the same time.

This complementarity not only applies to spin angular momentum along per-
pendicular axes but also to position/ momentum, energy/ time and many other
observables. The phenomenon of complementarity leaves no doubt that the
state of a system is imperceptible and the observables that we perceive and
measure are produced in the moment of observation and do not inhere in the
systems themselves.

It is these factors that have lead quantum physics to declare that:

“ “[W]e have to give up the idea of [naive] realism to a far greater
extent than most physicists believe today.” (Anton Zeilinger). .. By
realism, he means the idea that objects have specific features and
properties - that a ball is red, that a book contains the works of
Shakespeare, or that an electron has a particular spin. . . for objects
governed by the laws of quantum mechanics, like photons and elec-
trons, it may make no sense to think of them as having well defined
characteristics.” [11]

It is not just particles and atoms that are governed by quantum mechanics
either:

“Quantum mechanics is increasingly applied to larger and larger
objects. Even a one-ton bar proposed to detect gravity waves must
be analysed quantum mechanically. In cosmology, a wavefunction
for the whole universe is written to study the Big Bang. It gets
harder today to nonchalantly accept the realm in which the quan-
tum rules apply as somehow not being physically real. .. “ Quantum
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mechanics forces us to abandon naive realism”. And leave it at
that.” [12]

3.3 Simulating Quantum Systems

To illustrate how to simulate a quantum system we will consider the example
of a quantum computer that computes the square of the vNOT function on a
single qubit (two state wavefunction). This will also serve as an illustration of
quantum computing. The example is drawn from [13].

Recall that given a pseudo-classical state the vNOT gate produces a mixed
state, however another application of the vNOT gate to this mixed state will
result in the NOT of the original input. Thus +vNOT - vNOT = NOT. The
causal matrix that describes the vVNOT gate is

1+s  1—i
VvNOT = (122 ﬁﬂ) (3.13)
2 2
This causal matrix is unitary
f 14 1= 1—i 144 1 0
2 2 2 2

And it has the desired behaviour

VvNOT - vNOT =

VR

1+3 1—1 1+4 1—4
2 2 2 2
1—3 1F¢ | " | 1=4 1+4
2 2 2 2

(3.15)

Although this causal matrix describes what will happen overall it doesn’t de-
scribe how the quantum system will evolve as the process unfolds, to do this we
need the unitary evolution operator. To determine the unitary evolution oper-
ator we can calculate it using Schrodinger’s equation of motion (3.12) and the
Hamiltonian for a general quantum computer, which was discovered by Richard
Feynman.

First we start with a circuit level description of the computation that we wish
to implement, in this case it involves two quantum logic gates being applied to
one qubit. In general we can divide the overall action of the unitary operator
into the application of k separate operators for each of k logic gates that operate
on m qubits, thus it can be written as Ag - Ag_1-...- Ag.
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We want a Hamiltonian H such that U(t) = e~ /" = (e‘iH/h)t results in a
unitary evolution operator that implements the dynamical evolution described
byAk~Ak_1~...~Ao.

Feynman found that by augmenting the circuit with k£ + 1 extra qubits, which
serve as a program counter®, the Hamiltonian could be expressed as

k—1
H= ZCH_l s aj - Ai+1 + (Ci+1 Ay AH_l)]L (316)
=0

Where ¢ and a are creation and annihilation operators. The matrix

‘= (‘f 8) (3.17)

is called a creation operator because it converts a O-state to a 1-state and a
1-state to the null state. The matrix

" <8 (1)> (3.18)

is called an annihilation operator because it converts a 1-state to a 0-state and
a O-state to the null state. To produce a creation or annihilation operator that
operates on the i® qubit (i.e. ¢; or a;) we can use a matrix direct product [14]
with identity matrices in all positions except the i, where there is either a ¢
or a. For instance co = I ® c® I ® 1.

The effect of this Hamiltonian is such that the creation and annihilation oper-
ators move the counter backwards and forwards and apply the corresponding
gate operator only when the counter is in the correct position. Thus we can
measure the counter qubits and when the final qubit is set we know that the
computation has completed and the answer (or superposition of answers) can
be found in the output qubits.

In our case there are k = 2 logic gates so we need k+1 = 3 counter qubits, thus
we need four cubits all up, including the single in / out qubit that the logic
gates operate on. Thus the memory register of the quantum computer can be
visualised as (Co i Ca M ) where C; represents the counter qubit for the
ith step and M represents the memory element that holds both the input state
and the resulting output state.

For our particular example there are two identical gate operators A; = A,
both of which are vNOT gates as shown in (3.13). However the causal matrix
shown operates only on a single qubit, hence we need to use a direct product in
a similar fashion to the creation and annihilation operators. Given the structure

5The use of a program counter can also be applied to general SMN simulations.



44 CHAPTER 3. QUANTUM SIMULATION (QSMN)

of the quantum memory register we want the gate operators to operate on the
last of the qubits, hence A; = As = I ®1®I®vNOT. Now that we have
the creation and annihilation operators as well as the gate operators we can
calculate the Hamiltonian using (3.16), which produces the matrix

000 0 0O0O0OO0OO0OTO0OTO0OTO0OTUO0OTO0OTO0DO®O0
00 0 0 00 O0OO0OO0OTO0OTO0OTO0OTO0OTO0OTO0ODO®O0
00000 O0OO0OO0OTO0OTO0OTO0OTO0OTGO0OTO0OTO0OO®O0
0000 ab 0O0UO0OT®O0UO0OUO0OTO0OTO0OGO0O0
0000 baoO®O0OUOT O0OTOUOTO0OTO0OO0O0
0 0ObaoOOU 0O O0OabO0O0O0O0O00
0 0O0ab O0O0O0O0ODbaoOO0O0O0O00O0
000 O0O0OOOOOOab 0000
H= 000 0 O0OOOOOODba0O0O0°0U0 (3.19)
0000 baoO®O0OUOT O0OTOUOTO0OTO0OTO0O0
000 0OabO0OOO0OO0OTO0OO0OTO0OO0O0OQO0
000 00O O b aoOO0OUO0OUO0abo0o0
000 00 0 abO0O0O0O0WDbao0o0
000 O0O0OOOOOODba0O0O0°0
00 0O 0 O0OO0OO0OO0OO0OTUO0OabO0O0O00O0
0000 O0O0OO0OO0OO0OTO0OTO0OTU0ODTGOTO0OO0OO0

1—
2

tary evolution operator using U (t) = (e*iH/h)t and the power series expansion

L Given this Hamiltonian we can calculate the uni-

where a = % and b =

" 2 28
H:1+x+§+§+... (3.20)

where ! represents the factorial®. We then consider each matrix element and
use the power series expansions of cos and sin. This produces the unitary
evolution matrix.

bgl=q-(qg—1)-...-1
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SO DD DD IDODDODDODIDDDDDDDODOODODOO =
=N eloBeoNoloNoleoBeloBeoloBol-) =
OO O DODOO OO MH OWo o
OO0 OO2 OO O HLOoOoOo
DO OO MH DO O OO
OO DODDDOOMm HLOOLD O OO
OO OO h OO WwWooooo o
DO OR MM OO WoOooooo o
SO DODODOODOOWOOMm 2 OO O
OO O DD O WO ODOoOMMm O OO
DO O OO OO OO
OO MH D DD MhHh DO OO
DO OWXWMm OO OO OO
SO WO OO OO0 o
O O DD DD DODDODDDDoODODODODODOooO0C OO
—H O O OO OO OO0 o0 oo 0o

(3.21)
where

= 8
»—l_|_§

=@
|

NI= - Q
+ o
\% S~—

=~ o~
|

3.22
5(1 — 1) sin V2 (322)

( 1 —i)siny/2

I
s\ 3

Now we produce an initial state vector from the direct product of four qubits,
[¥(0)) =]1) ®]0) @ |0) ® |¢) = |100q) where the |1) qubit sets the first counter
to the 1-state, the |0) qubits set the rest of the counters to the 0-state and the
final |¢) qubit sets the input qubit to the desired input-state, which could be a
superposition but here it is sensible to use either |0) or |1).

Then the state of the quantum memory register (state vector) at any future
moment can be determined by |i(t)) = U(¢) - [¢(0)). Note that the time
dependence of U(t) raises the matrix to the power of ¢, thus U(t) = U*. This is
then applied to the initial state. We can also leave t = 1 and repeatedly apply
the causal matrix to iterate the simulation forward in time in order to observe
its dynamical behaviour. Let us set the input state to |0) thus the initial state
is |1000) and we will compute vNOT - /NOT - |0) = NOT|0) which should
produce the output state |1).

After the simulation has been running for a number of iterations the state vector
will be in a mixed state representing a superpostion of all possible states. There
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are four binary qubits so there are 2* = 16 possible states and corresponding
to each state there is a probability. Eventually we will find this mixed state in
a form similar to:

[0000) : 0| [0100) : 0.04 | [1000) : 0.02 | [1100) : 0
0001) : 0| [0101) : 0.04 | |1001):0 | [1101): 0
0010): 0 | [0110):0 | |1010):0 | |1110): 0
0011): 0.9 | [0111):0 | |1011):0 | [1111):0

Where each state and its corresponding probability are listed.

Given the structure of the computational process, encoded in the Hamiltonian,
most of the states are forbidden; hence there are many zero probabilities. For
instance, only one counter qubit can be in a 1-state at any given moment.

Thus the probabilities shown above suggest that there is a probability of 0.02
that the memory register is still in the initial state. There is a probability of
0.04 that the first logic gate has been applied, leaving the output in a O-state.
There is a probability of 0.04 that the first logic gate has been applied, leaving
the output in a 1-state. These two have equal probabilities implying that there
is a probability of 0.08 that the second step has been applied thus leaving the
output in a mixed state, as expected from one application of the vNOT gate.
Finally, there is a probability of 0.9 that the second logic gate has been applied
resulting in a 1-state in the output.

If there was still significant probability for the initial |1000) state or the inter-
mediate |0100) and |0101) states then the system would be allowed to evolve
further. However once there is significant probability that the system is in its
final state |0011) we can then read off the result of the computation.

This example has illustrated the relationship between the description of what
happens (3.13) and the description of how it happens (3.21). These two are
related via the Schrédinger equation of motion (3.12) and the Hamiltonian(3.16,
3.19). This has also served as an example of a simple quantum computation.

3.4 Continuous Quantum Simulation

We have thus far used system mechanics to derive the foundations of quan-
tum mechanics for finite dimensional complex vector spaces, however in gen-
eral quantum mechanics operates within an infinite dimensional complex vector
space, called Hilbert space. The basic principles are the same however the in-
troduction of infinities produces some subtleties. We will not examine this here
since it is addressed elsewhere, for example [, 9].



Chapter 4

Quantum and Classical
Systems

Now that we have developed quantum system simulation we can further develop
the classical approach and then examine how the quantum and classical system
models relate to each other and what they imply about virtual systems.

4.1 Classical Simulation (CSMN)

Classical SMN is non-linear and isn’t strictly algebraic however it still works
according to the same general priniciples as the other varieties of SMN. Instead
of using matrix / vector multiplication of the standard mathematical variety it
uses generalised matrix / vector multiplication. To illustrate how this works
lets consider the standard form as a special case of the generalised form. In the
standard form we have

(e o) ()= (s Tl e)

Note that for classical systems the state vector is not a probability distribution,
instead it contains classical state variables in the same manner as the water
tanks example (sec. 1.2).

Here we can identify two operations, firstly a pairwise operation P = () - ()
between a matrix element and a vector element, and secondly a row operation
R = () 4+ () between all pairs resulting from a row of the causal matrix being
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applied to the state vector. Thus in the case of standard matrix / vector multi-
plication we see that P corresponds to scalar multiplication and R corresponds
to summation. In general we have

Poo  Po moo Mot (Vo
Py Py mip M1 vy

_ (RO Epoo(moo, U0)7 Po1 (m017 Ul)%)

A\’ P1o(m10,v0), Pr1(ma1,v1)

Ry
R’

So the standard matrix / vector multiplication expressed in this notation gives

(B (e ()
— ((moo *v0) + (mo1 'U1)>

(mag - vo) + (M1 - v1)

In the general case the causal matrix and state vector can be treated as a data
structure whilst the R and P operations can be treated as general functions
that operate on that data.

P can be any function that takes a matrix element and a vector element as input
then returns a single output of any kind. R can be any function that takes the
outputs of the P functions as its input then returns a single vector element.
The type of the inputs to P are constrained and the type of the output from
R is constrained but what happens in between is completely unconstrained.
Any type of operation can be performed, ranging from a simple mathematical
function to a complex algorithm or computer program.

Furthermore, the vector elements can be any arbitrary data from numerical
quantities to binary data such as strings, bitmaps or anything. The matrix
elements can be any arbitrary data or function so long as the P functions know
how to combine it with the corresponding vector element.

A useful variation is to let the matrix elements be a pair of functions I;; (input
filter) and O;; (output filter), then the pairwise function applies these two
functions in succession, thus P;;(m;;,v;) = 1;; (0,5 (vy)).

Here the vector element v; represents the internal state of a system. The output
filter O;;(v;) represents that internal state being expressed through a particular
interaction channel (thus systems can express themselves differently to different
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systems). The input filter I;;(O;;(v;)) is an expression being interpreted by the
receiving system.

Thus the internal state of each system is expressed then interpreted. Then a row
function merges these interpreted expressions from many interaction channels
into an overall interpretation of the system’s perception of its environment. The
output of the row function is the system’s response to that perception, which
is a new internal state for that system. This internal state is then expressed
along different channels, whereon it is interpreted and responded to. Thus
the information flows throughout the system network and animates the system
dynamics.

This approach produces a model of general massively parallel computational
processes. CSMN is an algorithm that can transform a single computational
process into any number of virtual parallel computational processes. Further-
more, given that matrix algorithms are easily parallelisable any number of pro-
cessors operating on shared memory can share the computational load, hence
it can transform any number of processors into any number of virtual parallel
processes. All of the parallelisation issues such as dead-locking and re-entrance
are handled seamlessly by the CSMN algorithm.

Unlike the state space system models CSMN does not have an exponential in-
crease in complexity, hence it is ideal for implementation on classical comput-
ers. The matrix approach has certain overheads however these can be largely
avoided using sparse matrices so that only the non-zero matrix elements are
represented.

Furthermore, rather than have an entire causal matrix operate on the vector
in each iteration there is a more efficient approach that is called energy flow
processing. For instance, if an input interface draws information from certain
vector elements and these have not changed in the last iteration then there is
no need to process that input interface again because the result will be the
same as before. Thus when a vector element changes, the algorithm scans
down the corresponding column of the causal matrix to see which systems
depend on that state and only those systems are processed. This means that
the computational load on the simulator is dependent on the amount of change
occuring in each simulation moment, hence it depends on the flow of energy
through the simulation. This results in a logical equivalence between virtual
energy and computational load.

CSMN not only provides a method by which to simulate and analyse general
computational processes, but also a way to implement them. This is a form
of system-oriented software engineering. The system designer need only under-
stand the target system and use any system modelling methodology such as
UML, or any formal language such as C++, Java, OWL and so on. CSMN
can also be given a GUI interface so that the system designer simply creates
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graphical system networks and assigns behaviours to the various components.
The system model can then be converted into a CSMN model and directly
simulated.

Thus the system designer doesn’t need to understand a particular modelling
language or programming language, any formal language that can specify the
system will suffice. Once the system model is converted to CSMN form it can be
analysed and tested using methods adapted from linear algebra. For maximum
efficiency it can also then be converted into C code to avoid what little overhead
there is from the CSMN algorithm itself.

An SMN system simulation is a closed system, however this can be augmented
with system wrappers. These are virtual systems within the simulation that
represent external systems such as software programs or procedures, onscreen
display objects and any electronically controllable equipment. When data is
written to the system wrapper it is relayed to the external system and when
data is read from the system wrapper it is drawn from the external system. In
this way external systems can participate in the virtual system dynamics and
the virtual systems can participate in external dynamics.

For more information and the C source code of a prototype implementation
(still in alpha development phase) see [15]. There are also previous versions
that implement different system models such as a particle simulator / draw-
ing program where the ‘brushes’ are systems of particles, cellular automata,
a fluid drawing canvas and a drink machine [16]. There are also examples of
mathematical models of relativistic particles, springs and logic gates [17].

4.2 Logical Equivalence

To illustrate the logical equivalence between quantum and classical system mod-
els lets consider the earlier example of the NAND / XOR logic circuit (from
sec. 2.6).

In the quantum case we had

00 01 p(00)
oo oo p(01)

M-V=11 9 0 o0 p(10) (4.4)
01 10 p(11)

Its classical equivalent is

NAND | - -] (1 1) (w) _ (vo NAND v (45)
XOR L 1 1 V1 - Vo XOR’Ul )
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where the pairwise function is P;; = () - () and m,; = 1, which selects the vector
elements and presents them to the row function, which then applies a logical
operation to them.

We could easily change the quantum causal matrix slightly to produce a sim-
ulation that did not correspond to any known logical operation. However we
can represent the transformations between pseudo-classical states as a set of
truth tables and then extend the set of logical operations to include all pos-
sible truth tables. The mixed states (superpositions) can be represented as
probabilistic (stochastic) processes. In this way we can accommodate both the
non-algorithmic variations and the mixed states. For instance, instead of using
NAND, XOR and other recognised logical operations, we can enumerate all
the possible truth tables and index them as Op; then each row function can
implement one of these Op; operations and every quantum model will have a
corresponding classical model.

Thus we see that for every quantum model there is a classical equivalent even
though most of these employ non-standard logical operators and stochastic pro-
cesses. Thus the two are logically equivalent algorithms for system simulation.
The quantum approach is more fundamental, however the classical equivalent
is closer to our common sense understanding of systems.

4.3 Virtual Systems

In the earlier discussion on the four aspects of virtual systems and virtual reality
(sec. 1.2.7) we examined a simple classical model. Each system had interfaces
that corresponded to a particular row and column. From the generalised model
we see that systems control the output filters in their output interface (column)
and the input filters in their input interface (row).

I, 1O 1, (4.6)

Thus a system can control how it expresses itself to others and how it interprets
the expressions of others. It cannot control the expressions or interpretations
of other systems. The only way it can influence others is by how it expresses
itself (output filters) and by its own responses (changes in internal state), which
depend on its interpretations (input filters).

This not only applies to atomic systems (systems with no sub-systems) but also
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to complex systems (systems with sub-systems). In the complex case there are
several vector elements, rows and columns that relate to the system. These are
conceptualised as a single complex vector element, row and column. Thus the
same conclusions apply to both atomic and complex systems.

This analysis is of the classical case, however the logically equivalent quantum
case leads to a different picture of a system. In the quantum model there is
no longer a particular row and column that correspond to a system. Instead
individual systems are represented solely by their component of the joint state
and all operations are in terms of transitions between joint states.

In the quantum model there are no explicit individual entities. There is only
the unified quantum system and its state transitions. It is only once we shift to
the classical equivalent that the individual systems are explicitly represented.
Due to the unified quantum foundation the interactions between the individual
systems exhibit global coherence.

This suggests that fundamentally there is only a single unified system that un-
dergoes state transitions. The quantum state vector represents a multiverse
wherein all possible universal configurations are represented as potentialities.
Thus there are no explicit systems or system interactions, there is only a uni-
fied whole that is represented by changing probability distributions within a
multiverse. However the classical picture is logically equivalent, thus another
way of looking at the situation is in terms of individual systems and system
interactions.

Thus there are two ways of interpreting the same situation. Either everything
is one and whole or all things are separate and individual. This apparent
duality can be inferred from the same reality generative information process by
interpreting it in different ways.



Chapter 5

Summary and Extension

To summarise what has transpired thus far, we started with simple observations
about systems, developed a mathematical model of systems then extended this
until it was coherent, thus deriving the foundations of quantum mechanics.
We have also examined some of the principles of virtual reality. In doing so
we have developed system mechanics and shown that quantum mechancs is a
sub-domain of system mechanics that studies quantum systems.

This results in a system theoretic conceptual framework that provides a coherent
foundation upon which key concepts can be developed further. Before moving
on, there is more that can be said to extend the foundation that has been
developed so far.

5.1 Non-Ergodic SMN

An ergodic system is one where the transition probabilities remain constant.
For instance, if when a system is in state sy there is a probability p(0 — 1)
that it changes to state s; then that causal relation does not change from one
moment to the next. If the state vector represents the state of an entire universe
and the laws of nature remain constant then this would be an ergodic system
model. Such a system can be modelled by a single causal matrix that drives a
cyclic evolutionary process of the state vector.

However, in general the systems that we wish to model are not an entire universe
thus we may require different matrices to model their non-ergodic evolution.
For instance, just because a piece of machinery functions smoothly at one point
doesn’t mean that it will always do so. The machinery may become worn, hence
the causal framework that defines the causal relations between the sub-systems
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changes.

Furthermore, when simulating an entire universe there is a possibility that
the laws of nature do in fact change, albeit rather slowly on the time-scale of
the virtual systems and even if the laws of nature are constant there is the
possibility that once one full evolutionary cycle has been completed using one
causal matrix, another cycle will begin using a different causal matrix. In each of
these cases the causal matrix must change in some causally determined manner
so it is useful to enquire how a modelling methodology can accommodate a
changing causal framework.

So far we have only considered the case where a single causal matrix operates on
a state vector such that V;;1 = M - V;. The elements of the state vector change
whilst the causal matrix and therefore the causal relations remain constant.
Hence we have only considered ergodic systems thus far. However the SMN
approach can be extended to simulate non-ergodic systems as well.

The way we do this is to use the same approach for simulating target systems
to simulate SMN itself, thus SMN becomes the target system that is to be
simulated by a higher-level SMN simulator. Hence an SMN process is nested
within and SMN process. We will not explore these nested models in detail but
a brief overview is provided.

First consider that the state vector V represents states of being and the causal
matrix M represents ways of changing. Hence their combination M -V repre-
sents an event within the simulation; i.e. a transition from a particular state
to another.

Earlier in (2.12) we saw a complete list of all possible M -V combinations
within a deterministic simulation of two binary systems. This is a complete list
of all possible events that can occur within the corresponding simulation.

Let the state vector E represent a probability distribution over this complete
list of events, so each event has an associated probability, which is represented
by a particular element of E. Then let the causal matrix C' be a causal frame-
work that determines how the occurance of one event results in the likelihood
of other events in the next moment ( iteration). Thus the causal matrix M
may change from moment to moment thus the causal framework within the
simulation may change.

An iteration of C'- F produces a new E state vector. For simplicity lets assume
that it is a pseudo-classical state vector although it need not be. A pseudo-
classical E vector specifies a particular M -V pair which when iterated produces
a new state vector V that defines the state of the next moment of existence for
virtual systems. The next iteration of C - E produces a new M -V pair but
the vector in this pair must be the same vector that resulted from the previous
M -V iteration, only the M causal matrix can be different. This requirement
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places constraints on the form of the C' causal matrix.

The C' causal matrix represents how the causal framework changes over the life-
cycle of a system, i.e. it is a causal framework over a causal framework. The E
vector represents the initial state of a system, i.e. it is a state vector defining
the initial events that trigger a cycle of events, which unfold into a system’s
life-cycle. Thus each C' - E pair is a seed, which when iterated produces an
entire evolutionary cycle of a non-ergodic system.

In the un-nested M -V case the states may be non-classical but the events
themselves are classical in the sense that only one event (M -V iteration) can
occur at a time. However if the E vector is non-classical we have a probability
distribution over events, hence the events themselves are non-classical. In this
case there will be a probabilitiy distribution over the resulting V' vectors, which
then influences the form of the new probability distribution over the E vector
in line with the constraint on the form of C' mentioned previously.

This nested SMN approach can be taken further although the results of this are
highly speculative. In the case of simulating an entire universe the next level
simulates how one universal cycle follows another.

The next level has a state vector X representing every possible C' - E com-
bination. There is also a causal matrix Y, such that Y - X determines how
one universal cycle follows another. Once a C - E pair is selected this seed is
iterated for a complete cycle before the next pair is selected. Thus there is a
primary and secondary SMN process, the primary process selects a universal
seed and initiates a secondary process that iterates it to completion, whereon
the secondary process ceases and the primary process selects another seed and
initiates another secondary process. If the X vector is pseudo-classical it selects
only one C - E pair to be iterated thus there is only one universe however if it
is non-classical then there may be a mixed state of multiple universes.

This could be taken further still but it is unclear what possible meaning could
be associated with the deeper nested levels. The three level nesting of M -V,
C - FE and Y - X can represent all states of being, ways of changing, events,
evolving causal frameworks, universal life-cycles and universal successions.

5.1.1 Structural Nesting

There is another form of nested SMN, which is not related to the form just
described. To distinguish between them we may call the above form processual
nesting whilst the other form may be called structural nesting. In structurally
nested SMN the elements of the causal matrix can themselves be matrices and
the corresponding elements of the state vector can themselves be state vectors.
This nesting can be many levels deep however it must at some point bottom out
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with scalar values as matrix and vector elements.

When a nested causal matrix is multiplied with a nested state vector the pair-
wise terms m;; - v; are not a multiplication of scalars, they are another matrix
/ vector multiplication. This can be understood by visualising a system net-
work where each node is itself a system network and each edge is a connection
between multiple nodes within the sub-networks. First consider the system
network Z, which contains two nodes zp and z; (fig. 5.1).

VA

Figure 5.1: A simple system network.

However each of these nodes is itself a system network, which are labelled X
and Y (fig. 5.2).

Figure 5.2: A structurally nested system network.

This nesting can be many levels deep. The fully expanded system network
(containing all nested levels) can be represented as a single flat (non-nested)
causal matrix and vector, which is logically equivalent.
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In matrix notation the system network Z consists of two sub-networks X and

0 1 0 0 0
Y, where X = (1 O> andY =0 0 1
1 10

These can be arranged within a larger causal matrix, which is logically equiv-
alent to a flat causal matrix (the lines indicate the regions of the flat matrix
that have been nested).

Mx  Mx-y
M, =
(MY«—X My )

Il
corl~o
oo oo
— o oloo
— o ol~o
o~ oloo

The causal matrices Mx and My represent the sub-networks X and Y. Mx._ vy
represents the connections to X from Y. My . x represents the connections to
Y from X.

Whether a causal matrix is flat or nested is irrelevant to the functioning of
the simulation because both are logically equivalent. However it can be useful
to use a modular causal matrix model where sub-system causal matrices and
their interaction matrices are developed separately and then inserted into a
super-system model.

Furthermore, the flat system model can be partitioned in different ways, thus
producing different groups of different sub-networks. Hence the sub-system
boundaries can be arbitrarily defined.

In general, a partition that maximises the connectivity within sub-systems and
minimises the connectivity between sub-systems will be the most useful and
the one that agrees most with our own perception of systems. This relates
to the subject of meta system transition, joint probabilities, complex systems
and the formation of ‘objects’. These were discussed in sec. 2.5.1 where we
found that objects are actually objects of perception and have no fundamental
identity in themselves, they are an emergent property of coordinated sub-system
interactions which produces the appearance of an individual entity.

5.2 Quantum Mechanics

5.2.1 Matrices or Waves

There are two logically equivalent mathematical formulations of quantum me-
chanics; matrix mechanics (developed by Heisenberg) and wave mechanics (de-
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veloped by Schrodinger). In the early days of quantum mechanics both of these
emerged at much the same time. There was much debate over which approach
was preferable and people gravitated towards wave mechanics because the ma-
trix mathematics was unfamiliar and the mathematics of waves was already
familiar due to its application in classical physics. It was also believed that
waves were more ‘physical’ than abstract information processes represented by
matrices.

However it was later noticed by Max Born [18] that quantum waves were dis-
tinctly non-physical in the sense that they were not a physical wave travelling
through something but instead they were waves of the complex square root of
probabilites, which had to be squared in order to result in anything physically
meaningful. They were therefore numbers that cycled in the manner of waves in
order to participate in a purely computational process. Thus the ‘physicallity’
of wave mechanics was only superficial.

At the time physicists were very familiar with classical physics and had little ex-
perience with computers or computational processes, let alone of virtual reality.
However, in light of these it becomes apparent that the matrix mechanics and
quantum phenomena in general can be understood as computational processes
that do not operate within space and time, instead space and time arise from
the computational processes. This is the essence of the systems paradigm.

“Richard Feynman developed an elegant model for describing
the amplitude of the many waves involved in a quantum event, cal-
culating the interference of all of these amplitudes, and using the
final result to calculate a probability. However, Feynman disclaimed
any insight into whatever physical process his system might be de-
scribing. Although his system achieved a result that was exactly
and perfectly in accord with observed natural processes, to him it
was nothing more than calculation. The reason was that, as far as
Feynman or anybody else could tell, the underlying process itself
was nothing more than calculation... A process that produces a re-
sult based on nothing more than calculation is an excellent way to
describe the operations of a computer program. The two-step pro-
cedure of the Schrédinger equation and the Feynman system may be
impossible to duplicate with physical systems, but for the computer
it is trivial.” [18]

The uncanny utility of mathematics in the sciences has been a mystery through-
out the history of science, however if it turned out that the universe was in a
sense the result of a calculation (i.e. a simulation) then it is obvious that
mathematics would be the ideal way to study physical systems.

The superficially ‘physical’ waves, or any physicalist interpretation of quantum
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mechanics, cannot lead towards any great insight into the nature of quantum
processes. Hence there have been many statements such as

“The theory has, indeed, two powerful bodies of fact in its favour,
and only one thing against it. First, in its favour are all the mar-
vellous agreements that the theory has had with every experimental
result to date. Second, and to me almost as important, it is a theory
of astonishing and profound mathematical beauty. The one thing
that can be said against it is that it makes absolutely no sense!” [19]

However the matrix mechanics approach can lead to deeper insight into the
nature of quantum processes. Quantum matrix mechanics can be conceptually
integrated with system mechanics and through this avenue the computational
nature of quantum processes becomes apparent and so too the virtual nature
of the physical universe. This explains why any physicalist interpretation is
bound to be non-sensical and only a computational / systems interpretation
can yield deeper insights.

Furthermore, via system theory it may be possible to extend quantum theory
into the realm of macroscopic complex systems. With a naive realist, ma-
terialist ontology it was impossible to do so, however it can be achieved by
reconceptualising macroscopic objects as complex systems and by recognising
the informatic nature of general systems and the quantum nature of the infor-
mation processes that animate them. This could eventually result in a genuine
theory of everything (TOE).

5.2.2 Cybernetic Interpretation

It is not just the mathematical formulation of quantum mechanics that suggests
that reality has a computational nature, many of the properties of quantum
systems are incomprehensible within a physicalist paradigm but are obvious
and essential within a computational / systems paradigm.

Wave particle duality

In Young’s double slit experiment it was found that light behaved both like
a wave and a particle. After passing through two slits it formed interference
patterns on a screen exactly like waves. However when the intensity of light
was reduced to the point that there could only be one photon at a time passing
through the slits, that single photon still interferred with itself as if it was a
wave.
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“Investigating the mechanics of this process turns out to be im-
possible, for the reason that whenever we try to observe or otherwise
detect a wave we obtain, instead, a particle. The very act of ob-
servation appears to change the nature of the quantum unit. .. the
‘wave function’ is somehow ‘collapsed’ during observation, yielding a
‘particle’ with measurable properties. The mechanism of this trans-
formation is completely unknown and, because the scientifically in-
dispensable act of observation itself changes the result, it appears
to be intrinsically and literally unknowable. .. As John Gribbin puts
it, “nature seems to 'make the calculation’ and then present us with
an observed event.”” [18]

Ontological Sameness

All macroscopic objects possess some individual identity in the sense that in
principle they are able to be distinguished. This property is called primitive
thisness. However quantum systems of the same type are intrinsically identical.

“If you were to study an individual quantum unit from a col-

lection, you would find nothing to distinguish it from any other
quantum unit of the same type. Nothing whatsoever. Upon re-
grouping the quantum units, you could not, even in principle, dis-
tinguish which was the unit you had been studying and which was
another. ..
Roger Penrose has likened this sameness to the images produced by
a computer. Imagine the letter ‘t’. On the page you are viewing,
the letter t appears many times. Every letter t is exactly like every
other letter t. That is because on a computer, the letter t is pro-
duced by displaying a particular set of pixels on the screen. You
could not, even in principle, tell one from the other because each is
the identical image of a letter t. The formula for this image is buried
in many layers of subroutines for displaying pixels, and the image
does not change regardless of whether it is called upon to form part
of the word ‘mathematical’ or ‘marital’.” [18]

Quantum Leaps

In classical physics whenever a change occurs it does so via a continuous shift
from one state to another, however in quantum physics there are truly discon-
tinuous leaps from one state to another. As if there were
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“discrete points and discrete instants with nothing in between,
not even nothing. ..the mind reels to imagine space and time as
disconnected, always seeking to understand what lies between two
points or two instants which are said to be separate. . .In quantum
mechanics, however, there is no transition at all. Electrons are
in a low energy state on one observation, and in a higher energy
state on the next; they spin one way at first, and in the opposite
direction next. The processes proceed step-wise; but more than
step-wise, there is no time or space in which the process exists in
any intermediate state.” [18]

Quantisation of Observables

61

In classical physics all quantities and concepts are continuous and are infinitely
divisible, however in quantum physics this is not the case. It was found that
certain calculations yielded infinities instead of sensible answers, however if
it was assumed that space was quantised and there was a smallest possible
distance, beyond which the concept of distance simply has no meaning, then
these calculation yielded incredibly accurate results. The smallest distance is
the Planck length, there are also Planck quantities for the smallest unit of time,
frequency, energy, and so on. It would take an infinite amount of information
to specify a quantity that was not quantised, hence quantisation makes sense
from the perspective of system simulation.

“It appears that there is no presently conceived computer ar-
chitecture that would allow anything but such a discrete, digitized
time and space, controlled by the computer’s internal clock ticking
one operation at a time. Accordingly, it seems that this lack of con-
tinuity, so bizarre and puzzling as a feature of our natural world, is
an inherent characteristic of a computer simulation.” [18]

Non-Locality

One of the most puzzling aspects of quantum systems, from a classical perspec-
tive, is non-locality.

“[T]he essence of non locality is unmediated action-at-a-distance. . .

Without benefit of mediation, a non-local interaction effortlessly
flashes across the void. . . Even “flashes across the void” is a bit mis-
leading, because ‘flashing’ implies movement, however quick, and
‘across’ implies distance traveled, however empty. In fact, non-
locality simply does away with speed and distance, so that the
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cause and effect simply happen...There is no apparent transfer
of energy at any speed, only an action here and a consequence
there. .. The non-locality which appears to be a basic feature of
our world also finds an analogy in the same metaphor of a com-
puter simulation. .. In fact, the measured distance between any two
pixels (dots) on the monitor’s display turns out to be entirely ir-
relevant. .. The pixels may be as widely separated as you like, but
the programming generating them is forever embedded in the com-
puter’s memory in such a way that — again speaking quite literally
— the very concept of separation in space and time of the pixels has
no meaning whatsoever for the stored information.” [18]

Another analogy is a virtual reality flight simulator in which it may take hours
to fly from one country to another in a virtual airplane, however the simulator
itself does not operate within the context of that virtual space and time.

5.3 Consciousness

Naive realism keeps us trapped within the veil of appearances, however via
quantum mechanics modern science is beginning to penetrate through the veil of
appearances and encounter the information processes that underlie the virtual
reality that we think of as the physical universe.

Using the approach outlined in this book we are able to develop a detailed
mathematical science that can comprehend the processual nature of existence
and thereby understand consciousness and its place in reality.

Here we briefly examine the hard problem of consciousness and the general form
of the dynamical equations of individual consciousness.

5.3.1 Hard Problem of Consciousness
“The easy problems of consciousness include those of explaining
the following phenomena:

e the ability to discriminate, categorize, and react to environ-
mental stimuli;

e the integration of information by a cognitive system;

e the reportability of mental states;

e the ability of a system to access its own internal states;
e the focus of attention;

e the deliberate control of behavior;
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e the difference between wakefulness and sleep.

There is no real issue about whether these phenomena can be
explained scientifically. All of them are straightforwardly vulnerable
to explanation in terms of computational or neural mechanisms. ..

If these phenomena were all there was to consciousness, then
consciousness would not be much of a problem. Although we do
not yet have anything close to a complete explanation of these phe-
nomena, we have a clear idea of how we might go about explaining
them.

The really hard problem of consciousness is the problem of expe-
rience. When we think and perceive, there is a whir of information-
processing, but there is also a subjective aspect. As Nagel (1974)
has put it, there is something it is like to be a conscious organism.
This subjective aspect is experience. When we see, for example, we
experience visual sensations: the felt quality of redness, the experi-
ence of dark and light, the quality of depth in a visual field. . .

Why is it that when our cognitive systems engage in visual and
auditory information-processing, we have visual or auditory experi-
ence: the quality of deep blue, the sensation of middle C? How can
we explain why there is something it is like to entertain a mental
image, or to experience an emotion?

If any problem qualifies as the problem of consciousness, it is
this one. In this central sense of “consciousness”, an organism is
conscious if there is something it is like to be that organism, and a
mental state is conscious if there is something it is like to be in that
state.” [2]

Experiential Processes

We have touched upon the issue of ‘experience’ within the discussion so far by
refering to the animating process operating ‘within’ a system as an experiential
process. So far this term has been used to describe the fact that systems receive
input information and are affected by it. However to what extent can they really
be said to ‘experience’ it?

The systems paradigm presented in this book proposes that virtual systems do
in fact ‘experience’ things in the full sense of that word. To comprehend this we
must question what it is in our thinking that causes us to assume otherwise. A
system can never observe another system’s experiences, all it can do is observe
that system’s appearance and behaviour. Thus it is impossible to empirically
prove that another system does or doesn’t experience.

However it has been widely accepted that only certain systems can experience
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whilst others cannot. In many times and places it was assumed that only hu-
mans could experience, however now it is generally accepted that animals do as
well. It is also accepted by many that in some sense plants also experience. All
of this without a single shred of empirical evidence regarding the experiences of
other systems; only observations of appearances (the content of our own experi-
ences) and our interpretations of these observations within the context of some
paradigm. Empirically speaking we can only ever verify our own experiential
process and that of others is fundamentally unverifiable.

Rather than just accept a prevailing set of assumptions about which sytems have
experiential processes and which are ‘inanimate’; let us try something different
and see how it fits within the systems paradigm. For now, stop thinking of
information processes in terms of inanimate physical processes, such as the
functioning of a computer, and instead consider things from the perspective of
neutral monism.

Neutral monism is a metaphysical philosophy that proposes that reality is nei-
ther purely physical nor purely mental, and neither is it composed of two funda-
mentally separate physical and mental aspects. Rather, there is a single aspect
that is neither physical nor mental, which in some manner underlies both.

Consider the possibility that the underlying aspect can be conceptualised as an
information process. This is in fact the crux of the systems paradigm that is
being presented here.

This information process serves as a simulator that animates virtual systems.
Through their input signals the virtual systems receive a view of a virtual reality,
which from their perspective is indistinguishable from a ‘physical’ reality. It is
a tangible dynamical context within which they find themselves. This explains
the manner in which information processes can produce a flow of contents of
perception that seems, in every respect, to portray a physical universe.

Regarding the mental aspect (felt inner experience) we cannot observe another’s
experiential process, however our own experiential process proves that systems
can have such a thing as an experiential process. Furthermore, all of the easy
problems of consciousness mentioned above can be explained in terms of in-
formation processing by sub-systems such as sensory organs, nervous systems,
brains, neurons, synapses and so on. Thus awareness of felt experience is a
subjective observation of the inner processes of many interacting sub-systems,
which integrate and result in the experiential process of a super-system.

This is related to the way that interacting sub-systems produce the appearance
of a single super-system via a meta system transition, which was discussed in
sec. 2.5.1. Hence a meta system transition can be empirical; producing complex
objects of perception (‘physcial’ objects), or it can be subjective; producing a
complex experiential process (mind).
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Thus our awareness of having a mind can be conceptualised as a subjective
meta system transition by which the experiential processes of sub-systems ap-
pear to form into a single experiential process. Given that the sub-systems are
animated by information processes, this explains the manner in which informa-
tion processes can produce an experiential process that seems, in every respect,
to be mental.

This line of enquiry suggests that the neutral monist aspect of reality can be
conceptualised as an information process. Thus both physical and mental pro-
cesses supervene on information processes, which are not “inanimate physical
processes” but in fact produce genuine felt experience within virtual systems. It
is for these reasons that the animating process, when embodied within a virtual
system, is refered to as an experiential process.

Resolving the ‘Hard’ Problem

Within the context of the systems paradigm the “hard problem” is easily re-
solved. It is only difficult to resolve if one begins from assumptions about inert,
inanimate systems. However in the systems paradigm inanimate systems do not
exist. All systems are animate because they are animated into existence. All
systems experience because the experiential process is what animates systems.
Each point of existence experiences things from its perspective and responds.
Thus the dynamical happening of existence is driven by experiential processes.

Related theories have been developed by many throughout history, in the
form of panprotopsychism, panprotoexperientialism, process philosophy, neu-
tral monism, Russellian monism, Type-F monism, strong inter-subjectivity, dig-
ital physics, computational metaphysics, Advaita Vedanta, Buddhism and so
on. The theory presented in this book differs from these mainly in that it
arises from a mathematical science of general systems; the resulting world-view
however is compatible with these theories.

Inanimate or Animate Systems

It is difficult to imagine how inanimate systems can be governed by some mys-
terious ‘laws’ and what these laws might be such that inanimate systems can
‘follow’ them. It is also difficult to imagine how inanimate systems could inter-
act at all let alone how their interactions could give rise to conscious experience
- hence the difficulty in resolving the hard problem of consciousness within such
a paradigm.

It is far more plausible that systems experience each other and respond, thereby
changing state. It is only from a naive realist perspective, which focuses solely
on the appearances (content of experience), that one may postulate the exis-
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tence of ‘inanimate’ systems and then formulate equations that describe the
changing appearances. Then, being totally unaware of the underlying experi-
ential processes that actually drive the system dynamics, it is proposed that
the equations themselves are some kind of ‘law’ that the inanimate systems
mysteriously ‘follow’.

In the context of the systems paradigm the “laws of physics” are descriptions
of observable behaviour, whilst the causative principle is the animating process
of the whole simulation, which gives rise to the experiential processes of all
systems. The laws of physics provide insights into the structure of the system
model that the simulator uses to animate the simulation, but they are not
causative in themselves. Thus ‘experience’ is not something that must arise
from the interactions of inanimate systems; rather, it is the driving force of all
interactions between animate systems.

The naive realist approach is analogous to someone observing a computer screen
and formulating equations that describe the behaviour of the perceived objects,
however these equations are descriptions only. They give insights into the under-
lying program, however the causative principle is the operation of the computer
as it executes the program to animate the application, whose interface-objects
the person is observing.

This example illustrates the degree to which naive realism can lead us into false
conclusions. For example, if a person is entirely unaware of the existence of
computers and programs and they observed a computer screen assuming that
the perceivable objects on the screen were fundamentally real objects (individ-
ual entities with self nature) they could only assume that descriptive equations
are all that can be known about the situation. Thus when they pressed a button
and a dialogue box came up, they would conclude that a fundamentally real
button was pressed, which then resulted in the creation of a fundamentally real
dialogue box. By realising that these objects are in fact virtual and that there
is a program that defines them and a computer that animates them, the person
can gain a much deeper understanding of the situation.

5.3.2 Dynamical Equations of Individual Consciousness

Within the classical context modelled by CSMN (sec.4.1) there exist individ-
ual classical systems with individual experiential processes, hence within this
context SMN results in equations for individual experiential processes, which
are in a sense dynamical equations of individual consciousness. These provide
a mathematical framework for further research into consciousness.
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Form of the Equations

As the universal equation (V/ = M - V) iterates there are many sub-equations
encoded within this that are also iterated. Each of these sub-processes rep-
resents the animating process of a classical system. The universal equation
can be examined to identify the individual sub-equations that represent the
structure and behaviour of an individual experiential process. Or conversely,
the individual equations can be defined to build up the form of the universal
equation.

These experiential processes can be thought of as streams of individual con-
sciousness. These streams of consciousness perceive, experience, respond and
evolve as the systems interact with each other. Thus the universal equation
is the dynamical equation of universal consciousness and the sub-equations are
dynamical equations of individual consciousness.

Here we first illustrate the form of the equations, then explain what the com-
ponents represent in terms of consciousness and how the components evolve.

Recall that in CSMN the matrix M has elements m;; = I;; - O;;. Note that
these are operators so I;; - O;; = I;;(0;;()). When the matrix is multiplied with
a state vector using generalised matrix multiplication (sec. 4.1) we get (for two
systems)

M-V = (moo m01> . <U0> (5.1)
mio M U1

. <R0§P00(m00, ’U0)7 POl(m017 Ul)%)

R Pio(m10,v0), Pr1(ma1,v1)

Here we define the pairwise function P() as multiplication but leave R() in
general form. Thus in this case
Ry Ro(moo - vo), (mo1 - v1)
Ry

- (Rl(mlo ~vo), (M - Ul))

Poo(moo, o), P01(m01701)§
Pio(mio, vo), Pri(mir, v1)

_ (ROE(IOO - Ooo * v0), ({01 - On 'W)%) (5.2)
R1((I10 - O10 - v0), (I11 - O11 - v1)

Note that the operator equation I;;-O;;-v; is equivalent to the function equation

1;5(0s5(vy))-
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Components of the Equations

e v; represents system j’s internal state.

e O;; represents system j’s output filter that expresses its internal state to
system 1.

e (O;j - v;) is the raw appearance of system j from system i’s perspective.

e [;; represents system i’s input filter that interprets the raw appearance
of system j.

e (I;; - O;j - vj) is system i’s experience of system j.

e The set F; = {I;; - O;; - v; | Vj} is system ¢’s field of experience, which
includes experiences of the raw appearance of every perceivable system
including itself.

e R;(F;) is a row operation that integrates all of system i’s experiences and
responds with an new internal state for system .

Equations of Evolving Consciousness

For each individual system (indexed by i) there are several equations that de-
scribe its perceptions, experiences and responses over time.

All of the components can vary from iteration to iteration, thus a system’s
experiential process can evolve due to its stream of experiences, responses and
expressions. The state of a system’s input and output filters and its response
function can be thought of as its attitude. Thus its attitude can change due to
its interactions with systems.

The equations represents a cognitive feedback loop. Thus ‘how’ a system expe-
riences influences ‘what’ it experiences, and ‘what’ a system experiences influ-
ences ‘how’ it experiences.

Each component below corresponds either to the current value (unprimed) or
the new value (primed).

For system 1:
Changing state (state of being):

Changing response mapping (state of mind):

R, = Q(R;, Fy) (5.4)



5.3. CONSCIOUSNESS 69

For each j:

Changing output interface (expression):

Oi; = ©(0y5,v)) (5.5)

Changing input interface (perception):

Ii; = O, 045 - vj) (5.6)

These describe the detailed processes that implement a system’s evolving atti-
tude.

This determines where it directs its attention, how it interprets what it per-
ceives, how these experiences impact upon the perceiving system’s internal state
and how its attitude changes due to its experiences, responses and expressions.

The exact form of the evolution functions Q(), ®() and O() determine how the
system’s state of mind, way of expressing and way of perceiving change. Each
function changes an aspect of the system’s attitude based on the current state
of that aspect and the current information flowing through it.

We have examined a single iteration of these equations whereby the current
internal state is filtered and processed to produce a new internal state. However
with each iteration the internal state is further filtered and processed, thus with
successive iterations the equations are recursively nested.

By giving each component a temporal index [t] we can examine a second iter-
ation and from there infer the form of successive iterations. From the above
example of two systems we see that after one iteration the new internal state
of system 0 is

vo[L] = Ro[0]((Zoo[0] - Ouo 0] - vo[0]), (Lo1[0] - Opu[0] - va[0]))  (5.7)

After another iteration the new internal state of system 0 is

v0[2] = Ro[1]((oo[1] - Ovo[1] - wo[1]), (Tr[1] - Oou [1] - 01 [1]))  (5.8)

Where

Ro[1] = Q(Ro[0], Fo[0]) (5.9)

IToo[1] = ©(Ino[0], Ono[0] - v0[0]) (5.10)
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Ooo[1] = ®(Ogo[0], vo[0]]) (5.11)
wo1] = Ro[0]((Zoo[0] - Ooo[0] - vo[0]), (o1 [0] - Or[0] - w1 [0])) (5.12)
Io1[1] = ©(Ip1[0], 01 [0] - v1[0]) (5.13)

Oo1[1] = ®(0:1[0], v1[0]]) (5.14)

o1 [1] = Ra[0]((10[0] - O10[0] - vo[0]), (111 [0] - Owr [0] - w1 [0])) (5.15)

Substituting these into the equation for v[2] (5.8) we get an equation in terms
of initial conditions. Thus for a particular iteration [n] the equation is first
expressed in terms of the previous iteration [n — 1], then via substitution we
can express it in terms of any previous iteration, right back to the initial state
[0]. This can be applied to the entire equation or to particular branches of the
recursively nested structure.

In a typical complex system there may be millions of interacting systems and
millions of iterations, hence these will be extremely complex equations. Never-
theless they express the current state of a system in terms of its entire stream
of experiences and the consequent evolvution of its attitude.

These overall dynamical equations of individual consciousness require a great
deal of further development in order to be able to model anything that would be
recognisable to ourselves as conscious systems, however they provide a way of
working towards that. A way to do so would be to identify evolution functions
for simple systems and build complex networks of those systems. This would
effectively produce complex systems with complex evolution functions.

This set of equations also make it explicit that SMN is an inherently panpsychist
approach, where every system has a stream of consciousness and these streams
can be modelled and analysed using CSMN.

5.4 System Science

From the discussion so far we can provide a concise definition of a system. A
system can be described as a dynamic pattern of information that structures
the flow of information. Recall that information here is defined as discernible
difference. A system is metaphorically like a whirlpool in a stream, which is a
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pattern of water that structures the flow of water. However a system is not an
entity in space and time, it consists of structured information flowing through
the simulator. Most of a system is imperceptible and it is only the appearances
of systems that can be discerned within the virtual reality.

From this definition there are several rammifications:

Inter-Connectedness

Systems seem to be separate individual entities when their appearances are
observed by a system. However aside from these appearances a system is an
intrinsic and inseperable part of a unified and universal animating process. It
is not a mereological ‘part’ in the sense that the animating process is “made
of” systems, however it is a part in the sense that it IS the animating process
but not the whole of it.

Global Coherence

The unified foundation and inter-connectedness result in global coherence be-
tween all systems so all interactions are part of a unified process and are not
purely local interactions between intrinsically separate systems. Every event is
a ‘movement’ of the whole.

No Fundamental Existence to Objects

Objects are the appearances of systems and a system has no fundamental self
nature, but is instead an emergent property of the functioning of the simulator.

Two Existential Contexts

These are not separate but are different conceptions of the same context. The
unified context can be conceptualised as either a computational or virtual con-
text, a processual or experiential context, an absolute or relative context. These
pairs of conceptualisations depend on whether one focuses on information pro-
cesses or the information content within these processes. l.e. they depend on
whether one observes experiential processes (subjectivism) or the content of
experience (empiricism).
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Subjectivity

All observable phenomena are the content of an experiential process. Thus
naive realism, which ascribes fundamental existence to appearances is a flawed
position. Nothing can be observed objectively because all observations are sub-
jective experiences. Objectivity can only be inferred through communication
and repeated subjective observation.

Virtualware

In traditional VR technology the appearances of complex systems are animated
by computational processes (software). Thus a virtual system cannot disect
other systems to discern how they operate nor can it decompose systems into
sub-systems that can then be recombined into a new system. All of the details
of a system are specified within the programming which is inaccessible to virtual
systems.

However in an SMN simulation every complex system consists of sub-systems,
each of which has an observable appearance. Thus the causal structure and
dynamics of systems is not hidden within the programming and any system
can be dissected or decomposed and new systems can be formed. In a systemic
virtual world the ‘software’ (SMN simulator) simply provides potential existence
and everything else if defined in ‘virtualware’, which can be examined and
manipulated by virtual systems.

Thus it is possible for virtual systems to conduct science and technology within
an SMN generated virtual reality. Furthermore, a mature system science would
provide for the development of science and technology to levels of sophistication
that would be impossible to reach otherwise.

Simulation - Analogy or Literal Fact?

Given the common definitions of terms, the idea that the physical universe
is a virtual reality simulation being animated by a simulator, which is a pro-
gram running on a computer is just a useful analogy and should not be taken
literally. However given the general definitions of information as discernible
difference, computation as the coherent transformation of information and the
simulator as a self-referential computational process that manifests both expe-
riential processes and the content of experience. In this general sense it is a
literal fact that the physical universe is only known via the content of expe-
rience, that all systems are animated by experiential processes and that the
world-of-appearances (experiential context) is not self-existent but is instead an
emergent phenomenon arising from underlying information processes.
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Therefore, in the context of these general definitions and particularly in light of
quantum physics the ideas of simulator, simulation, virtual systems and virtual
reality represent a literal description of the nature of reality. Thus the general
theory of virtual reality and the systems paradigm imply that the physical
universe is virtual.

Web Ontologies

Current upper level web ontologies' begin with abstract concepts but then
define spatio-temporal contexts and objects as if these have fundamental exis-
tence. Therefore they are naive realist. To be realistic they need to provide
more detail at the deeper levels.

A systems ontology begins with information processes and information spaces.
It then defines an SMN-like simulator that produces a simulation. The dynamic
patterns of information can then be conceptualised as virtual systems. These
systems have experiences and due to naive realism the experiential contexts are
interpreted as an external world.

It is within these subjective world-experiences that concepts such as spatio-
temporal contexts and objects arise. From this point on a systems ontology
would be the same as current web ontologies however the inferences drawn from
it would differ due to its system theoretic rather than naive realist conceptual
foundation.

For instance, ‘matter’ could not be defined as a fundamental substance in which
physical properties inhere, rather it is a metaphor that systems use to compre-
hend their tangible experiences of system dynamics.

Ludwig von Bertalanffy

Finally a few comments regarding system science from one of its founders,
Ludwig von Bertalanffy:

“Our civilization seems to be suffering a second curse of Babel:
Just as the human race builds a tower of knowledge that reaches to
the heavens, we are stricken by a malady in which we find ourselves
attempting to communicate with each other in countless tongues of
scientific specialization... the only goal of science appeared to be
analytical, i.e., the splitting up of reality into ever smaller units and

LA web ontology is a digitally specified ontology that defines all concepts and relations
believed to exist in some context. An upper level ontology specifies the fundamental context
within which all other ontologies are situated. See [20, 21, 22,
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the isolation of individual causal trains... We may state as charac-
teristic of modern science that this scheme of isolable units acting
in one-way causality has proven to be insufficient. Hence the ap-
pearance, in all fields of science, of notions like wholeness, holistic,
organismic, gestalt, etc., which all signify that, in the last resort,
we must think in terms of systems of elements in mutual interac-
tion.” [24]

“General Systems theory should be an important means of in-
stigating the transfer of principles from one field to another (so that
it would) no longer be necessary to duplicate the discovery of the
same principles in different fields.” [24]

“There is this hope, I cannot promise you whether or when it
will be realized - that the mechanistic paradigm, with all its impli-
cations in science as well as in society and our own private life, will
be replaced by an organismic or systems paradigm that will offer
new pathways for our presently schizophrenic and self-destructive
civilization.” [24]

5.5 Naive Realism

The most ubiquitous false belief system, that has beguiled humanity through-
out history has, in recent times, been clearly revealed to be fundamentally
flawed. A paradigm shift is characterised as much by the assumptions and
pre-conceptions that we discard as by the realisations that we take up. The
deeper the assumptions are the more profound are the realisations and the more
revolutionary is the paradigm shift.

Naive realism is a chronic habit that is deeply conditioned, not just culturally
conditioned and biologically conditioned. It is an inherent precondition for a
system to experience a virtual reality, thus all virtual systems are naive realist
by nature; they all accept their input information without question. It takes
a sentient being with a great level of self-awareness and intelligence to discern
its naive realist tendencies and even then these remain as an entrenched habit.
It takes great persistence to overcome this habit, because all of ones interpre-
tations and attachments reinforce the habit. A complete and total paradigm
shift is required and there is no deeper paradigm shift that a system can un-
dergo. By overcoming naive realism they realise that they are not an object in
a world, they are the universal animating process itself having a virtual world-
experience within which it experiences itself as an individual entity, and so too
are all systems.
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Once that realisation overcomes the entrenched naive realist legacy of the past
and permeates our minds and the collective culture, radical changes will natu-
rally arise throughout all aspects of our lives and civilisation as a whole. Then
many endemic dysfunctions will evaporate and new possibilities will arise that
were previously inconceivable.
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